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Classification trees
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Classification trees
1 Recursive binary splitting algorithm
2 Splits features on basis of node purity

Gini index
deviance
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Figure 1: Sale of car seats (yes or No)
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Recusrsive binary splitting

Algorithm

1 Divide feature space in non-overlapping, rectangular regions
2 Choose splits that minimize node impurity (homogeneity of nodes)
3 Assign region to class with highest mode
4 Stop when node purity no longer increases

Algorithm is top-down and greedy, so

high variance
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Classification with trees or regression?

regression works best

trees work best for B
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Package tree

Growing and plotting trees with function tree()

train_tree <- tree(formula, data, split = c("deviance", "gini"))

plot(train_tree)
text(train_tree)

minimization of deviance or gini impurity
text() for adding labels to nodes
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Methods to reduce variance:

1 Pruning
cut branches with cross-validation and regularization

2 Bagging
average predictions of bootstrapped trees

3 Random forests
average predictions of decorrelated bootstrapped trees

4 Boosting
weighted combination of weak classifiers (small trees)
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Section 1

Pruning
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Cost-complexity pruning (package ‘tree)

1 Cross-validate the tree
2 Shows deviance/misclassification as function of nodes
3 Obtain predictions test set

cv.tree(fit_tree, method = c("deviance", "misclass"))

pruned_tree <- prune.tree(fit_tree, best = <number>)

predict(pruned_tree, newdata, type = "class")

cv.tree() deviance/misclassification as function number of nodes
best in prune.tree() is optimal number of nodes in cv.tree()

default type yields predicted probabilities
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Pruning example
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Section 2

Bagging, random forests
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Algorithm
1 Fit classification trees to 𝐵 bootstrap samples
2 Average the predictions
3 Out-Of-Bag (OOB) as estimate validation error
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Bagging vs random forests

Bagging

considers all predictors at each split
best predictors turn up in each tree
highly correlated trees
high variance

Random forests

considers random sample of predictors at each step
all predictors get a fair chance
decorrelated trees
lower variance

Maarten Cruyff Statistical Learning and Visualization 14 / 32



Out-of-bag error rate

On average 1/3 of observations not in bootstrap (Out-Of-Bag)

OOB cases used to compute validation error
no need for cross validation
computationally very efficient
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Variable importance
When averaging trees the tree structure is lost

how to interpret solution then?
effect predictors averaged over trees
visualize with variable importance plots
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Package randomForest

Training and prediction with bagging/random forest

fit <- randomForest(formula, data,
ntree = 500,
mtry = <number predictors at each split>,
importance = TRUE)

varImpPlot(fit)

predict(fit, newdata, type = "prob")

mtry: default random forest (bagging total number predictors)
ntree is tuning parameter (overfitting when too large)
importance = TRUE necessary for varImpPlot()

default type yields predicted class
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Section 3

Boosting
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Algorithm

1 Apply a weak classifier (e.g. stump) to training data
2 Increase weights for incorrect classifications, and repeat
3 Classifier is linear combination of weak classifiers
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Boosting vs bagging/random forest
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Boosting with package fastAdaboost

Boosting a single model

nIter is number of weak classifiers

ada <- adaboost(formula, data, nIter)

predict(ada, newdata)

nIter is tuning parameter (overfitting when too large)
predictions include classes, probabilities and misclassification error
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Boosting with package caret

Determine nIter with cross validation (caret)

ada <- train(formula, data,
method = "adaboost",
trControl = trainControl(method = "cv", number = 5),
tuneGrid = expand.grid(method = "Adaboost.M1",

nIter = <test sequence>))

predict(ada, newdata, type = "prob")

“Adaboost.M1” restricts search to one of two methods
default type yields predicted class
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Section 4

Support Vector Machines (SVM)
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SVM for binary classification

Classifiers using support vectors

1 maximal margin classifier
classes perfectly separable by hyperplane

2 support vector classifier
allows for non-separable cases

3 support vector machine
allows for non-linear boundaries
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Hyperplane

Divides the feature space in two

in two dimensions hyperplane is simply a line
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Separating hyperplane

Perfectly separates the two classes of the outcome variable

hyperplane not uniquely identified
high variance
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Maximal Margin Classifier
Identifies hyperplane by specification of a maximal marging

points on margin are support vectors
only works if cases are separable
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Support Vector Classifier (SVC)
Allows for violations of the margin (soft margin)

budget for violations is called cost (𝐶)
cases the wrong side of hyperplane contribute to the cost
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Support Vector Machines (SVM)

Allows for nonlinear hyperplanes, e.g. polynomial and radial
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SVM with pacakge e1071

Training and prediction

svm_train <- tune(svm, formula, data,
degree = 3, #default
coef0 = 0, #default
cost = 1, #default
kernel = c("linear", "polynomial", "radial"),
ranges = list(cost = <sequence>), etc.)

svm_train$best.model # performance summary

svm_class <- predict(svm_train, newdata, probability = TRUE)
svm_prob <- attr(svm_class, "probabilities")

cost, degree and coef0 are tuning parameters
ranges works similar as tuneGrid()
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SVM classification plot

Compression hyperplane two dimensions

plot(svm_train$best.model, data, x1 ~ x2)
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Pro’s and con’s classifiers

BLR

robust against outliers but potentially unstable

LDA

better stability but sensitive to normality violations

Tree-based methods

top-down and greedy, so bias-variance control needed
boosting considered as one of the best methods

SVM

similar to BLR (same loss function), but allows for non-linearity
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