
Statistical Learning and Visualization
Tree-based Methods

Maarten Cruyff

Maarten Cruyff Statistical Learning and Visualization 1 / 32

Classification trees

Maarten Cruyff Statistical Learning and Visualization 2 / 32

Content

1 Classification trees
2 Pruning
3 Bagging, random forests
4 Boosting
5 Support Vector Machines

Maarten Cruyff Statistical Learning and Visualization 3 / 32

Classification trees
1 Recursive binary splitting algorithm
2 Splits features on basis of node purity

Gini index
deviance

|
Advertising < 7.5

CompPrice < 144.5 Income < 77.5

CompPrice < 132 Advertising < 15.5No Yes

No Yes Yes Yes

Figure 1: Sale of car seats (yes or No)

Maarten Cruyff Statistical Learning and Visualization 4 / 32

Recusrsive binary splitting

Algorithm

1 Divide feature space in non-overlapping, rectangular regions
2 Choose splits that minimize node impurity (homogeneity of nodes)
3 Assign region to class with highest mode
4 Stop when node purity no longer increases

Algorithm is top-down and greedy, so

high variance

Maarten Cruyff Statistical Learning and Visualization 5 / 32

Classification with trees or regression?

regression works best

trees work best for B
Maarten Cruyff Statistical Learning and Visualization 6 / 32

Package tree

Growing and plotting trees with function tree()

train_tree <- tree(formula, data, split = c("deviance", "gini"))

plot(train_tree)
text(train_tree)

minimization of deviance or gini impurity
text() for adding labels to nodes

Maarten Cruyff Statistical Learning and Visualization 7 / 32

Methods to reduce variance:

1 Pruning
cut branches with cross-validation and regularization

2 Bagging
average predictions of bootstrapped trees

3 Random forests
average predictions of decorrelated bootstrapped trees

4 Boosting
weighted combination of weak classifiers (small trees)

Maarten Cruyff Statistical Learning and Visualization 8 / 32

Section 1

Pruning

Maarten Cruyff Statistical Learning and Visualization 9 / 32

Cost-complexity pruning (package ‘tree)

1 Cross-validate the tree
2 Shows deviance/misclassification as function of nodes
3 Obtain predictions test set

cv.tree(fit_tree, method = c("deviance", "misclass"))

pruned_tree <- prune.tree(fit_tree, best = <number>)

predict(pruned_tree, newdata, type = "class")

cv.tree() deviance/misclassification as function number of nodes
best in prune.tree() is optimal number of nodes in cv.tree()

default type yields predicted probabilities

Maarten Cruyff Statistical Learning and Visualization 10 / 32

Pruning example

Maarten Cruyff Statistical Learning and Visualization 11 / 32

Section 2

Bagging, random forests

Maarten Cruyff Statistical Learning and Visualization 12 / 32

Algorithm
1 Fit classification trees to 𝐵 bootstrap samples
2 Average the predictions
3 Out-Of-Bag (OOB) as estimate validation error

Maarten Cruyff Statistical Learning and Visualization 13 / 32

Bagging vs random forests

Bagging

considers all predictors at each split
best predictors turn up in each tree
highly correlated trees
high variance

Random forests

considers random sample of predictors at each step
all predictors get a fair chance
decorrelated trees
lower variance

Maarten Cruyff Statistical Learning and Visualization 14 / 32

Out-of-bag error rate

On average 1/3 of observations not in bootstrap (Out-Of-Bag)

OOB cases used to compute validation error
no need for cross validation
computationally very efficient

Maarten Cruyff Statistical Learning and Visualization 15 / 32

Variable importance
When averaging trees the tree structure is lost

how to interpret solution then?
effect predictors averaged over trees
visualize with variable importance plots

bp

age

npreg

ped

skin

bmi

glu

0 5 10 15
MeanDecreaseAccuracy

bp

npreg

age

skin

ped

bmi

glu

0 5 10 15
MeanDecreaseGini

Maarten Cruyff Statistical Learning and Visualization 16 / 32

Package randomForest

Training and prediction with bagging/random forest

fit <- randomForest(formula, data,
ntree = 500,
mtry = <number predictors at each split>,
importance = TRUE)

varImpPlot(fit)

predict(fit, newdata, type = "prob")

mtry: default random forest (bagging total number predictors)
ntree is tuning parameter (overfitting when too large)
importance = TRUE necessary for varImpPlot()

default type yields predicted class

Maarten Cruyff Statistical Learning and Visualization 17 / 32

Section 3

Boosting

Maarten Cruyff Statistical Learning and Visualization 18 / 32

Algorithm

1 Apply a weak classifier (e.g. stump) to training data
2 Increase weights for incorrect classifications, and repeat
3 Classifier is linear combination of weak classifiers

Maarten Cruyff Statistical Learning and Visualization 19 / 32

Boosting vs bagging/random forest

Maarten Cruyff Statistical Learning and Visualization 20 / 32

Boosting with package fastAdaboost

Boosting a single model

nIter is number of weak classifiers

ada <- adaboost(formula, data, nIter)

predict(ada, newdata)

nIter is tuning parameter (overfitting when too large)
predictions include classes, probabilities and misclassification error

Maarten Cruyff Statistical Learning and Visualization 21 / 32

Boosting with package caret

Determine nIter with cross validation (caret)

ada <- train(formula, data,
method = "adaboost",
trControl = trainControl(method = "cv", number = 5),
tuneGrid = expand.grid(method = "Adaboost.M1",

nIter = <test sequence>))

predict(ada, newdata, type = "prob")

“Adaboost.M1” restricts search to one of two methods
default type yields predicted class

Maarten Cruyff Statistical Learning and Visualization 22 / 32

Section 4

Support Vector Machines (SVM)

Maarten Cruyff Statistical Learning and Visualization 23 / 32

SVM for binary classification

Classifiers using support vectors

1 maximal margin classifier
classes perfectly separable by hyperplane

2 support vector classifier
allows for non-separable cases

3 support vector machine
allows for non-linear boundaries

Maarten Cruyff Statistical Learning and Visualization 24 / 32

Hyperplane

Divides the feature space in two

in two dimensions hyperplane is simply a line

Maarten Cruyff Statistical Learning and Visualization 25 / 32

Separating hyperplane

Perfectly separates the two classes of the outcome variable

hyperplane not uniquely identified
high variance

Maarten Cruyff Statistical Learning and Visualization 26 / 32

Maximal Margin Classifier
Identifies hyperplane by specification of a maximal marging

points on margin are support vectors
only works if cases are separable

Maarten Cruyff Statistical Learning and Visualization 27 / 32

Support Vector Classifier (SVC)
Allows for violations of the margin (soft margin)

budget for violations is called cost (𝐶)
cases the wrong side of hyperplane contribute to the cost

Maarten Cruyff Statistical Learning and Visualization 28 / 32

Support Vector Machines (SVM)

Allows for nonlinear hyperplanes, e.g. polynomial and radial

Maarten Cruyff Statistical Learning and Visualization 29 / 32

SVM with pacakge e1071

Training and prediction

svm_train <- tune(svm, formula, data,
degree = 3, #default
coef0 = 0, #default
cost = 1, #default
kernel = c("linear", "polynomial", "radial"),
ranges = list(cost = <sequence>), etc.)

svm_train$best.model # performance summary

svm_class <- predict(svm_train, newdata, probability = TRUE)
svm_prob <- attr(svm_class, "probabilities")

cost, degree and coef0 are tuning parameters
ranges works similar as tuneGrid()

Maarten Cruyff Statistical Learning and Visualization 30 / 32

SVM classification plot

Compression hyperplane two dimensions

plot(svm_train$best.model, data, x1 ~ x2)

Maarten Cruyff Statistical Learning and Visualization 31 / 32

Pro’s and con’s classifiers

BLR

robust against outliers but potentially unstable

LDA

better stability but sensitive to normality violations

Tree-based methods

top-down and greedy, so bias-variance control needed
boosting considered as one of the best methods

SVM

similar to BLR (same loss function), but allows for non-linearity

Maarten Cruyff Statistical Learning and Visualization 32 / 32

	Pruning
	Bagging, random forests
	Boosting
	Support Vector Machines (SVM)

