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BMI Dutch boys
How to predict Body Mass Index from age?
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Section 1

Linearity
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Linearity assumption

Assumption of the linear regression model

𝑦 = 𝛽0 + 𝛽𝑥 + 𝜀, 𝜀 ∼ 𝑁(0, 𝜎2)

predictions on straight regression line
residuals normally distributed and homoscedastic
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Non-linearity

Different shapes and forms

model choice depends on shape and form
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Accommodating non-linearity

Different models:

polynomials

𝑦 = 𝛽0𝑥0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + …

splines
fit polynomials to non-overlapping regions of 𝑋

tree-based models
compute the mean in non-overlapping regions of 𝑋
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Section 2

Polynomials
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Basis expansion
Expand the feature space with polynomials of 𝑋, e.g.

the cubic polynomial

̂𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3
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Making polynomials in R

The straightforward way

use the function I() in the model formula
model.matrix() creates the basis expansion

(M <- model.matrix(~ I(x^1) + I(x^2) + I(x^3), data.frame(x = 1:4)))

(Intercept) I(x^1) I(x^2) I(x^3)
1 1 1 1 1
2 1 2 4 8
3 1 3 9 27
4 1 4 16 64
attr(,"assign")
[1] 0 1 2 3
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Multicollinearity

Potential problem with I()

multicollinearity, i.e. high correlation between 𝑥, 𝑥2, 𝑥3, etc.

Correlations between polynomials:

round(cor(M[, -1]), 3)

I(x^1) I(x^2) I(x^3)
I(x^1) 1.000 0.984 0.951
I(x^2) 0.984 1.000 0.991
I(x^3) 0.951 0.991 1.000
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Orthogonal expansion
The function poly(x, degree = 3) creates on orthogonal basis

(P <- model.matrix( ~ poly(x, 3), data = data.frame(x = 1:4)))

(Intercept) poly(x, 3)1 poly(x, 3)2 poly(x, 3)3
1 1 -0.6708204 0.5 -0.2236068
2 1 -0.2236068 -0.5 0.6708204
3 1 0.2236068 -0.5 -0.6708204
4 1 0.6708204 0.5 0.2236068
attr(,"assign")
[1] 0 1 1 1

Correlations

round(cor(P[, -1]), 3)

poly(x, 3)1 poly(x, 3)2 poly(x, 3)3
poly(x, 3)1 1 0 0
poly(x, 3)2 0 1 0
poly(x, 3)3 0 0 1
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Section 3

Splines
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B-splines
Place a number of knots 𝜉 that divide 𝑋 in non-overlapping regions
fit cubic polynomial to each region and connect lines by equating 1st and 2nd
derivative
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Fitting cubis splines in R

Formula for generating B-spline basis matrix in R (package splines)

bs(x, df = NULL, knots = NULL, degree = 3) # cubic spline

ns(x, df = NULL, knots = NULL, degree = 3) # natural cubic spline

degree = 3 for cubic polynomial (default)
df number of knots (df = degree + number of knots)
knots position of knots in percentiles
natural cubic spline is linear beyond the boundary knots
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Basis matrix cubic spline with df = 4

bs(1:4, df = 4)

1 2 3 4
[1,] 0.00000000 0.0000000 0.00000000 0.00000000
[2,] 0.51851852 0.3703704 0.07407407 0.00000000
[3,] 0.07407407 0.3703704 0.51851852 0.03703704
[4,] 0.00000000 0.0000000 0.00000000 1.00000000
attr(,"degree")
[1] 3
attr(,"knots")
50%
2.5
attr(,"Boundary.knots")
[1] 1 4
attr(,"intercept")
[1] FALSE
attr(,"class")
[1] "bs" "basis" "matrix"
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Smoothing splines

Highly flexible spline

1 A knot 𝜉𝑖 for each unique value 𝑥𝑖
2 df controls wiggliness (value between 1 and # 𝑥𝑖)

Fitting smooth splines in R

smooth.spline(y ~ x, df = <nr>)
smooth.spline(y ~ x)

1st: user-specified df
2nd: optimal df determined with cross-validation
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Section 4

Regression trees
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Binary recursive partioning algorithm

1 Partition the feature space in distinct, non-overlapping regions
2 Compute the mean of all observations within a region
3 Select the partition that minimizes the MSE
4 Continue partitioning until a stopping criterion is reached

Tree function rpart() from package rpart

reg_tree <- rpart(y ~ x, method = "anova")
plot(reg_tree)
text(reg_tree)

Warning: trees tend to overfit, more on this in classification
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Example with one feature

|x< 1.641

x>=3.308
0.5358

1.532 2.421

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

x

tr
ee

Figure 1: Tree representation (left) and its predictions (right)
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Example with two features

Different way of looking at interactions

Figure 2: Salaries of baseball players (ISLR)
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Preview Lab 2A

Topics

polynomials
splines
trees

Next lab (Feature selection) features interactions
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