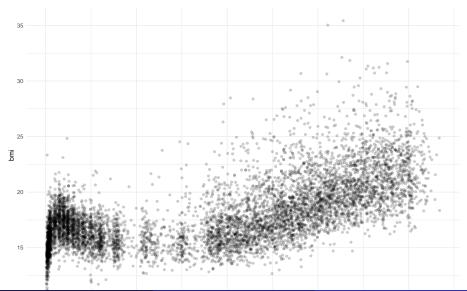
Statistical Learning and Visualization Non-linear Regression

Maarten Cruyff

BMI Dutch boys

How to predict Body Mass Index from age?



Maarten Cruyff

Linearity

- Polynomials
- Splines
- Regression trees

Section 1

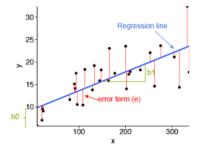
Linearity

Linearity assumption

Assumption of the linear regression model

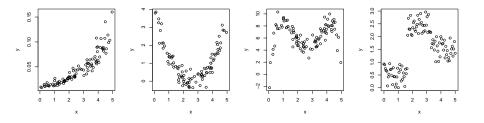
$$y=\beta_0+\beta x+\varepsilon,\qquad \varepsilon\sim N(0,\sigma^2)$$

- predictions on straight regression line
- residuals normally distributed and homoscedastic



Different shapes and forms

• model choice depends on shape and form



Different models:

polynomials

$$y=\beta_0x^0+\beta_1x^1+\beta_2x^2+\beta_3x^3+\dots$$

- splines
 - fit polynomials to non-overlapping regions of X

- tree-based models
 - $\bullet\,$ compute the mean in non-overlapping regions of X

Section 2

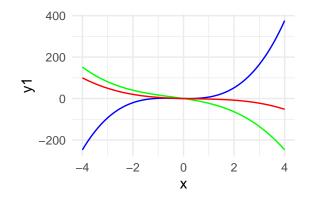
Polynomials

Basis expansion

Expand the feature space with polynomials of X, e.g.

• the cubic polynomial

 $\hat{y}=\beta_0+\beta_1x+\beta_2x^2+\beta_3x^3$



Making polynomials in R

The straightforward way

- \bullet use the function I() in the model formula
- model.matrix() creates the basis expansion

(M <- model.matrix(~ I(x¹) + I(x²) + I(x³), data.frame(x = 1:4)))

(In	tercept)	I(x^1)	I(x^2)	I(x^3)	
1	1	1	1	1	
2	1	2	4	8	
3	1	3	9	27	
4	1	4	16	64	
attr(,"assign")					
[1] 0	123				

Potential problem with I()

• multicollinearity, i.e. high correlation between x, x^2, x^3 , etc.

Correlations between polynomials:

round(cor(M[, -1]), 3)

	I(x^1)	I(x^2)	I(x^3)
I(x^1)	1.000	0.984	0.951
I(x^2)	0.984	1.000	0.991
I(x^3)	0.951	0.991	1.000

Orthogonal expansion

The function poly(x, degree = 3) creates on orthogonal basis

```
(P <- model.matrix( ~ poly(x, 3), data = data.frame(x = 1:4)))</pre>
```

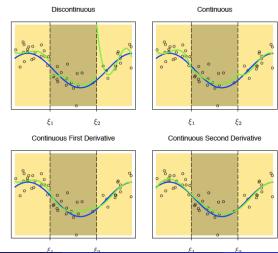
```
poly(x, 3)1 1 0 0
poly(x, 3)2 0 1 0
poly(x, 3)3 0 0 1
```

Section 3

Splines

B-splines

- $\bullet\,$ Place a number of knots ξ that divide X in non-overlapping regions
- fit cubic polynomial to each region and connect lines by equating 1st and 2nd derivative



Maarten Cruyff

Formula for generating B-spline basis matrix in R (package splines)

```
bs(x, df = NULL, knots = NULL, degree = 3) # cubic spline
```

ns(x, df = NULL, knots = NULL, degree = 3) # natural cubic spline

- degree = 3 for cubic polynomial (default)
- df number of knots (df = degree + number of knots)
- knots position of knots in percentiles
- natural cubic spline is linear beyond the boundary knots

bs(1:4, df = 4)

1 2 3 4 [1,] 0.0000000 0.000000 0.0000000 0.0000000 [2.] 0.51851852 0.3703704 0.07407407 0.00000000 [3,] 0.07407407 0.3703704 0.51851852 0.03703704 [4,] 0.0000000 0.000000 0.0000000 1.0000000 attr(,"degree") [1] 3 attr(,"knots") 50% 2.5 attr(,"Boundary.knots") [1] 1 4 attr(,"intercept") [1] FALSE attr(,"class") [1] "bs" "basis" "matrix"

Highly flexible spline

- A *knot* ξ_i for each unique value x_i
- **2** df controls wiggliness (value between 1 and $\# x_i$)

Fitting smooth splines in R

smooth.spline(y ~ x, df = <nr>)
smooth.spline(y ~ x)

- 1st: user-specified df
- 2nd: optimal df determined with cross-validation

Section 4

Regression trees

Binary recursive partioning algorithm

- Partition the feature space in distinct, non-overlapping regions
- Occupies the mean of all observations within a region
- Select the partition that minimizes the MSE
- Continue partitioning until a stopping criterion is reached

Tree function rpart() from package rpart

```
reg_tree <- rpart(y ~ x, method = "anova")
plot(reg_tree)
text(reg_tree)</pre>
```

Warning: trees tend to overfit, more on this in classification

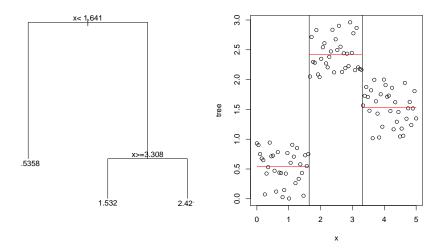


Figure 1: Tree representation (left) and its predictions (right)

Example with two features

Different way of looking at interactions

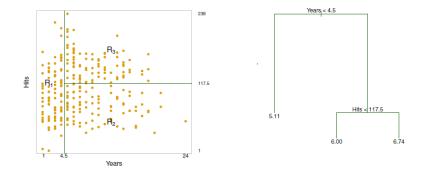


Figure 2: Salaries of baseball players (ISLR)

Topics

- polynomials
- splines
- trees

Next lab (Feature selection) features interactions