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Last week

Any questions about last week?
¢ Classification
e KNN
e |ogistic regression
® Linear discriminant analysis

Generative vs discriminative
® Trees

Confusion matrix
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Important concepts today

e Confusion matrix, FP, FN
e Sensitivity, Specificity, Accuracy, Error rate
e Precision, PPV, NPV

e F1

e ROC curve, AUC

e Calibration

® Bootstrap resampling

* Ensemble methods

e Bagging

e Random forest

e Boosting

Boosting
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Question

You create a model to predict whether researchers will win a Nobel prize. The test
accuracy of the model is 0.999. Is this a good model?
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Evaluating classifiers
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Table 5. Place Confusion Matrix

Inferred labels
Truth | Work | Home | Friend | Parking | Other || FN
Work 5 0 0 0 0 0
Home 0 4 0 0 0 0
Friend 0 0 3 0 2 0
Parking 0 0 0 8 0 2
Other 0 0 0 0 28 1
. o o | vt | vt [ 2 [-]
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true neighborhood
Centrum West  Nw-West Zuid Oost Noord Zdoost

Class size 0.1063  0.0902 0.0972  0.4100 0.0990 0.1096 0.0876

Register: postcode

Centrum 1.0000 0.0000 0.0000 0.0000 0.0000 0.0022 0.0000
West 0.0000 0.9947 0.0000 0.0000 0.0050 0.0000 0.0028
Nieuw-West ~ 0.0000 0.0000 0.9921 0.0000 0.0000 0.0044 0.0000
Zuid 0.0000 0.0000 0.0029 0.9994 0.0000 0.0000 0.0058
Oost 0.0000 0.0053 0.0025 0.0000 0.9950 0.0022 0.0000
Noord 0.0000 0.0000 0.0025 0.0006 0.0000 0.9912 0.0000

Zuidoost 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9914
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Prediction tree: wood you survive the Titanic?

0.36
’ (200%)
Sex = male

female

0.17 m

’ 65%) ’ 385%)

Age >= 6.5 Pclass >= 2.5
<6.5 <25
Fare >= 23
. <23

0.094 0.33 0.75 0.053 0.58 0.94
49% 13% 3% 3% 13%, 19%
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Confusion matrix: Counts

> p_pred <- predict(titanic_tree, newdata = val_df)
> with(val_df, table(p_pred > 0.5, Survived))

Survived

0 1
FALSE 134 40
TRUE 19 75

Supervised learning-classification (2/2) van Kesteren




Evaluating classifiers

0O00000®00000000000000000

Confusion matrix: Counts

Survived (observed)

No Yes
Survived (predicted)
No 134 (TN) 40 (FN)
Yes 19 (FP) 75 (TP)

* False positives (FP): 19
® False negatives (FN): 40
e Total errors: FP + FN

van Kesteren
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Confusion matrix: Sensivity (“recall”’) and Specificity
> with(val_df, table(p_pred > 0.5, Survived)) %>% prop.table(2)

Survived (observed)

No Yes

Survived (predicted)
No 0.876 0.348
Yes 0.124 0.652
TOTAL 1 1

e Specificity: TN+FP = 134 /(134 +19) ~ 0.876
e Sensitivity (“recall”): TP+FN =75/ (75 + 40) ~ 0.652

* Accuracy (ACC): rp- ey =~ 0-780
e Error rate: 1 — Accuracy = 0.220
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Confusion matrix: Positive (“precision”) and Negative predictive
value

> with(val_df, table(p_pred > 0.5, Survived)) %>% prop.table(1)

Survived (observed) TOTAL

No Yes
Survived (predicted)
No 0.770 0.230 1
Yes 0.202 0.798 1
o NPV: N = 134/ (134 + 40) = 0.770
* PPV (“precision”): rpiies = 75/ (75 + 19) ~ 0.798

van Kesteren
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F1 score

The F; score is the harmonic mean of precision and recall:

1 precision - recall

Fr=2 — =2
S S —
recall precision

precision + recall

¢ Like accuracy, the F; quantifies overall amount of error
¢ Unlike accuracy, F1 is not as affected by uneven class distributions
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Overview

Sensitivity (=Recall)

Specificity

Positive predictive value (=Precision)

Negative predictive value

Accuracy
e Even more: https://en.wikipedia.org/wiki/Confusion_matrix
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Different thresholds than 0.5

> with(val_df, table(p_pred > 0.4, Survived)) %>% prop.table(2)

Survived

0 1
FALSE 0.876 0.348
TRUE 0.124 0.652

> with(val_df, table(p_pred > 0.6, Survived)) %>% prop.table(2)

Survived

0 1
FALSE 0.961 0.522
TRUE 0.039 0.478

Etc.
Moving around the threshold affects the sensitivity and specificity!
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ROC curve for Titanic classification tree
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® Besides the quality of a single-shot predicted class (“yes/no”, “survive/die”,
)

¢ we could also be interested in the predicted probability.
e E.g.: risk scores in medicine, betting, ...
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Definition
A probability is a number p such that the proportion of events given that number
is about p.

¢ Ideally, the classification procedure (e.g. classification tree) outputs a
predicted probability directly.
e Unfortunately,

¢ Not all classifiers output something like a predicted probability (e.g. SVM);

* For many classifiers that do give a number between 0 and 1 called a “predicted
probability”, the predicted probability does not give the correct proportion of
events.

¢ This is called the “calibration problem”.
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Calibration plot

Definition
A probability is a number p such that the proportion of events given that number
is about p.

® A predicted probability is calibrated when it conforms to the definition above;
e Check this using a calibration plot.
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Calibration of Titanic classification
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Post-hoc probability calibration

e Some libraries allow you to tweak the predicted probabilities so they fit on the
curve. This is called “probability calibration”.

® There are many methods, but the most commonly used one takes a
classification model we know is calibrated (“logistic regression”) and applies it
to the uncalibrated scores outputted by the classifier;

* You may encounter this in your readings.
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Calibration plots (Reliability curves)
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MSE (“Brier score”)

® By saying Yes = 1 and No = 0, we can also evaluate the Mean Square Error
(MSE):
MSE =n~"> "(p; — yi)*
i

e Some call this the “Brier score” (only for classification!)
® Turns out MSE can be reworked into two terms:

MSE = Calibration term +
AUC term

(Both terms are such that smaller is better)
¢ |n other words, the MSE conflates calibration and AUC,;
e |t is useful if you're interested in both.
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Class imbalance

¢ |n the Titanic example, the outcome classes are pretty evenly balanced;

¢ That is not typical of many applications:
debt default; illness; activity; buy/don’t buy; tank/dog/selfie/..;
solid/liquid/gas/plasma; ...

* When at least one class has very few observations, this is called class
imbalance.

van Kesteren
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Class imbalance

® Measures such as SEN/SPE/ACC/F1 emphasize larger classes;
¢ \What if the smaller classes are the most interesting?

Some solutions:
e Oversampling/undersampling
* Weighting
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Short recap: Trees!
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Prediction tree: wood you survive the Titanic?

0.36
’ (200%)
Sex = male

female

0.17 m

’ 65%) ’ 385%)

Age >= 6.5 Pclass >= 2.5
<6.5 <25
Fare >= 23
. <23

0.094 0.33 0.75 0.053 0.58 0.94
49% 13% 3% 3% 13%, 19%
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Recursive partitioning

@ Find the split that makes observations as similar as possible on the outcome
within that split;

@® Within each resulting group, do (1).

e Criteria for “as similar as possible”: Purity, Reduction in MSE, ...
¢ Early stopping: add after (2):
® “unless there are fewer than np,, observations in the group” (typically 10);
* “unless the total complexity of the model becomes more than cp” (typically 0.05);
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Choosing complexity

© Use recursive binary splitting to grow a large tree on the training data,
stopping only when each terminal node has fewer than some minimum
number of observations.

@ Apply cost complexity pruning to the large tree in order to obtain a sequence
of best subtrees, as a function of «a.

® Use K-fold cross-validation to choose «. Foreach k=1,..., K:
3.1 Repeat Steps 1 and 2 on the (K—1)/Kth fraction of the training data, excluding

the kth fold.
3.2 Evaluate the model accuracy on the data in the left-out kth fold, as a function of

Q.
Average the results, and pick « to minimize the average error.
O Return the subtree from Step 2 that corresponds to the chosen value of a.

Source: Hastie & Tibshirani
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Advantages and Disadvantages of Trees

+ Trees are very easy to explain to people. (?)

+ Trees can be displayed graphically, and are easily (?7?) interpreted even by a
non-expert

+ Trees can easily handle qualitative predictors without the need to create
dummy variables.

- Trees are low bias but high variance — generally do not have the same level
of predictive accuracy as other approaches.

However, by aggregating many decision trees, the predictive performance of
trees can be substantially improved.

Source: Hastie & Tibshirani
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Bagging: the general idea

A
Total Error

Variance

Optimum Model Complexity

Error

Model Complexity

® |bias, ftvariance — Predictions differ strongly and meaninglessly across
training sets

IDEA Use different training sets to create different {|BTV models, then average the
predictions
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Bootstrap aggregating (bagging)

* Problem: we don’t have different training sets (just one)
e Solution: “bootstrapping”
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Do the following B times:

® Resample N values with replacement from training sample (with N
observations)

¢ Fit model (tree?) on each bootstrap sample
* On average, 2/3 of the training instances are selected
® The rest is "out-of-bag”

van Kesteren
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Bootstrap ensemble

® For new data, combine the predictions of the B models
* Majority vote for classification; simple average for regression,

e Useful bonus: Out-of-bag instances can serve as validation set for each
model!
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Bagged trees (“forest”)

Stage |: :
Bootstrap sampling Observations

e

=
| Training subset | I | Training subset 2 sesans
Stage 2:
Model training M v v é:
1 l 1 = Py
1 -

Tree t=2 ssssne  Tree =M

Tree t=

v: covariates
® Split nodes
® Leaf nodes

Stage 3: l l
| Forecast |

Model forecasting
=
Stage 4: - )
Result aggregating
Forecast
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¢ “Wisdom of Crowds”: the collective knowledge of a diverse and independent
body of people typically exceeds the knowledge of any single individual, and
can be harnessed by voting. Hastie and Tibshirani, p. 286

e Bagged trees are not diverse and independent: they are likely to choose
similar splits at the higher levels

¢ A random forest is bootstrap aggregated trees with a handicap: at each split,
consider only m out of the p predictors — decorrelating the trees
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Random forest

When m = p, standard bagging, but usually m = /p

0.5

Test Classification Error
0.3

0.2

T T T
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Number of Trees ISLR, figure 8.10
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Boosting
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® 1bias, Jvariance — Predictions stable, but wrong for some proportion of the
training data
IDEA Fit 1BJV models consecutively, to parts where the previous models don't fit
well
¢ [earn from mistakes of the previous models
¢ Average the predictions for new data: combine “weak” classifiers into
powerful “committee”

van Kesteren
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Boosting with decision stumps

Weak learner: decision tree with 1 split (“decision stump”)
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https://sebastianraschka.com/faq/docs/bagging-boosting-rf.html
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Boosting with decision stumps
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Conclusion
® There are different classification performance metrics, suitable for different
situations
¢ Class imbalance may affect the interpretation of classification performance
® ROC curve can be made for probabilistic classifiers
* Predicted probabilities can be calibrated

* Ensemble methods combine sets of base models (e.g., trees);
® Prediction from ensemble is average or majority vote;

e Bagging: ensemble (from bootstraps) of 1V|B models;

® Boosting: ensemble (from high residuals) of 1BJV models.

* Ensembles are very useful: often work well out of the box, state-of-the-art in
many competitions
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