Statistical learning and Visualization: Supervised learning - classification (2/2)

Erik-Jan van Kesteren

Department of Methodology and Statistics

Applied Data Science

	Evaluating classifiers		Short recap: trees!	Bagging	Boosting	Conclusion
00	000000000000000000000000000000000000000	0	00000	00000000	0000	00

- 2 Evaluating classifiers
- **3** Break

Introduction	Evaluating classifiers		Short recap: trees!	Bagging	Boosting	Conclusion
0	000000000000000000000000000000000000000	0	00000	00000000	0000	00

Last week

Any questions about last week?

- Classification
- KNN
- Logistic regression
- Linear discriminant analysis
- Generative vs discriminative
- Trees
- Confusion matrix

Important concepts today

- Confusion matrix, FP, FN
- Sensitivity, Specificity, Accuracy, Error rate
- Precision, PPV, NPV
- F1
- ROC curve, AUC
- Calibration
- Bootstrap resampling
- Ensemble methods
- Bagging
- Random forest
- Boosting

Evaluating classifiers ●০০০০০০০০০০০০০০০০০০০০০০০০০০০	Short recap: trees!	Bagging 00000000	Boosting 0000	Conclusion

Question

You create a model to predict whether researchers will win a Nobel prize. The test accuracy of the model is 0.999. Is this a good model?

	Evaluating classifiers		Short recap: trees!	Bagging	Boosting	Conclusion
00	000000000000000000000000000000000000000	0	00000	000000000	0000	00

Evaluating classifiers

	Evaluating classifiers		Short recap: trees!	Bagging	Boosting	Conclusion
00	000000000000000000000000000000000000000	0	00000	000000000	0000	00

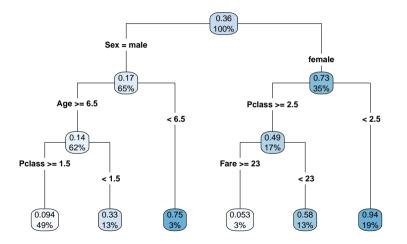
THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / January 2007

Table 5. Place Confusion Matrix

		Inferred labels						
Truth	Work Home Friend Parking Other							
Work	5	0	0	0	0	0		
Home	0	4	0	0	0	0		
Friend	0	0	3	0	2	0		
Parking	0	0	0	8	0	2		
Other	0	0	0	0	28	1		
FP	0	0	1	1	2	-		

Introductio		sifiers 000000000000000	Break o	Short rec 00000	ap: trees!	Bagging 000000000	Boos		Conclusion
-	-				true neigh	borhood			_
		Centrum	West	Nw-West	Zuid	Oost	Noord	Zdoost	i
_	Class size	0.1063	0.0902	0.0972	0.4100	0.0990	0.1096	0.0876	<u> </u>
	Register: postco Centrum	ode 1.0000	0.0000	0.0000	0.0000	0.0000	0.0022	0.0000)
	West	0.0000	0.9947	0.0000	0.0000	0.0050	0.0000	0.0028	5
	Nieuw-West	0.0000	0.0000	0.9921	0.0000	0.0000	0.0044	0.0000)
	Zuid	0.0000	0.0000	0.0029	0.9994	0.0000	0.0000	0.0058	
	Oost	0.0000	0.0053	0.0025	0.0000	0.9950	0.0022	0.0000)
	Noord	0.0000	0.0000	0.0025	0.0006	0.0000	0.9912	0.0000)
	Zuidoost	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.9914	ļ

Prediction tree: wood you survive the Titanic?



Confusion matrix: Counts

```
> p_pred <- predict(titanic_tree, newdata = val_df)</pre>
```

```
> with(val_df, table(p_pred > 0.5, Survived))
```

```
Survived
0 1
FALSE 134 40
TRUE 19 75
```

	Evaluating classifiers		Short recap: trees!	Bagging	Boosting	Conclusion
00	000000000000000000000000000000000000000	0	00000	000000000	0000	00

Confusion matrix: Counts

	Survi	Survived (observed)			
	No		Yes		
Survived (predicted)					
No	134	(TN)	40	(FN)	
Yes	19	(FP)	75	(TP)	

- False positives (FP): 19
- False negatives (FN): 40
- Total errors: FP + FN

	Evaluating classifiers		Short recap: trees!	Bagging	Boosting	Conclusion
00	000000000000000000000000000000000000000	0	00000	00000000	0000	00

Confusion matrix: Sensivity ("recall") and Specificity

> with(val_df, table(p_pred > 0.5, Survived)) %>% prop.table(2)

	Survived (observed)		
	No	Yes	
Survived (predicted)			
No	0.876	0.348	
Yes	0.124	0.652	
TOTAL	1	1	

- Specificity: $\frac{\text{TN}}{\text{TN+FP}}$ = 134 / (134 + 19) ≈ 0.876
- Sensitivity ("recall"): $\frac{\text{TP}}{\text{TP}+\text{FN}}$ = 75 / (75 + 40) ≈ 0.652
- Accuracy (ACC): $\frac{\text{TP+TN}}{\text{TP+FP+TN+FN}} \approx 0.780$
- Error rate: $1 \text{Accuracy} \approx 0.220$

	Evaluating classifiers		Short recap: trees!	Bagging 00000000	Boosting 0000	Conclusio
Confusi value	on matrix: Positive	("prec	cision") and I	Negative p	oredictiv	е

> with(val_df, table(p_pred > 0.5, Survived)) %>% prop.table(1)

	Survived	TOTAL	
	No	Yes	
Survived (predicted)			
No	0.770	0.230	1
Yes	0.202	0.798	1

- NPV: $\frac{\text{TN}}{\text{TN}+\text{FN}}$ = 134 / (134 + 40) ≈ 0.770
- PPV ("precision"): $\frac{\text{TP}}{\text{TP+FP}}$ = 75 / (75 + 19) ≈ 0.798

Evaluating classifiers	Short recap: trees! 00000	Bagging ooooooooo	Boosting 0000	Conclusion

F1 score

The F_1 score is the harmonic mean of precision and recall:

$$F_1 = 2 \cdot \frac{1}{\frac{1}{\text{recall}} + \frac{1}{\text{precision}}} = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

- Like **accuracy**, the *F*₁ quantifies overall amount of error
- Unlike accuracy, F1 is not as affected by uneven class distributions

	Evaluating classifiers		Short recap: trees!	Bagging	Boosting	Conclusion
00	000000000000000000000000000000000000000	0	00000	00000000	0000	00

Overview

- Sensitivity (=Recall)
- Specificity
- Positive predictive value (=Precision)
- Negative predictive value
- Accuracy
- Even more: https://en.wikipedia.org/wiki/Confusion_matrix

Different thresholds than 0.5

> with(val_df, table(p_pred > 0.4, Survived)) %>% prop.table(2)

Survived 0 1 FALSE 0.876 0.348 TRUE 0.124 0.652

> with(val_df, table(p_pred > 0.6, Survived)) %>% prop.table(2)

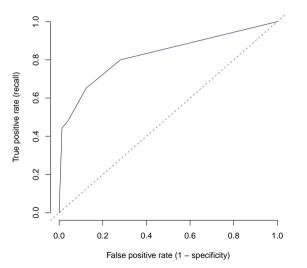
Survived 0 1 FALSE 0.961 0.522 TRUE 0.039 0.478

Etc.

Moving around the threshold affects the sensitivity and specificity!

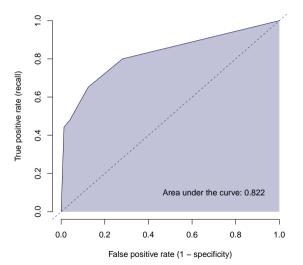
	Evaluating classifiers		Short recap: trees!	Bagging	Boosting	Conclusion
00	000000000000000000000000000000000000000	0	00000	000000000	0000	00

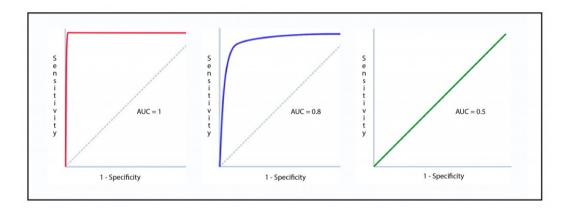
ROC curve for Titanic classification tree



	Evaluating classifiers		Short recap: trees!	Bagging	Boosting	Conclusion
00	000000000000000000000000000000000000000	0	00000	00000000	0000	00

ROC curve for Titanic classification tree





Evaluating classifiers	Short recap: trees!	Bagging	Boosting	Conclusion
000000000000000000000000000000000000000				

- Besides the quality of a single-shot **predicted class** ("yes/no", "survive/die", ...),
- we could also be interested in the predicted probability.
- E.g.: risk scores in medicine, betting, ...

Introduction	Evaluating classifiers	Break	Short recap: trees!	Bagging	Boosting	Conclusion
00 0	000000000000000000000000000000000000000	0	00000	00000000	0000	00

Definition

A **probability** is a number *p* such that the proportion of events given that number is about *p*.

- **Ideally**, the classification procedure (e.g. classification tree) outputs a predicted probability directly.
- Unfortunately,
 - Not all classifiers output something like a predicted probability (e.g. SVM);
 - For many classifiers that do give a number between 0 and 1 called a "predicted probability", *the predicted probability does not give the correct proportion of events*.
- This is called the "calibration problem".

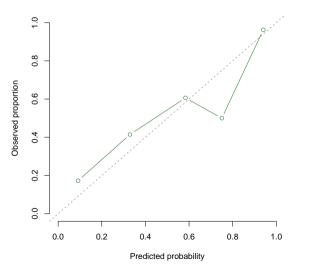
Calibration plot

Definition

A **probability** is a number *p* such that the proportion of events given that number is about *p*.

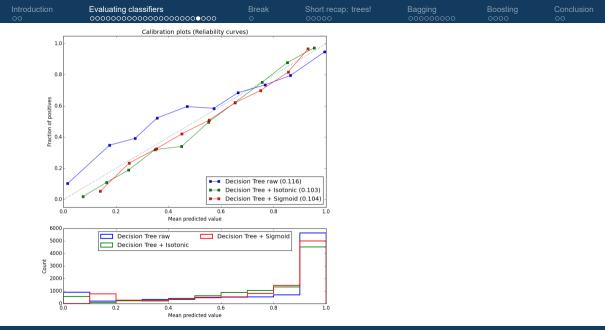
- A predicted probability is calibrated when it conforms to the definition above;
- Check this using a calibration plot.

	Evaluating classifiers		Short recap: trees!	Bagging	Boosting	Conclusion
00	000000000000000000000000000000000000000	0	00000	00000000	0000	00



Post-hoc probability calibration

- Some libraries allow you to tweak the predicted probabilities so they fit on the curve. This is called "probability calibration".
- There are many methods, but the most commonly used one takes a classification model we know is calibrated ("logistic regression") and applies it to the uncalibrated scores outputted by the classifier;
- You may encounter this in your readings.



MSE ("Brier score")

 By saying Yes = 1 and No = 0, we can also evaluate the Mean Square Error (MSE):

$$\mathsf{MSE} = \mathbf{n}^{-1} \sum_{i} (\hat{\mathbf{p}}_i - \mathbf{y}_i)^2$$

- Some call this the "Brier score" (only for classification!)
- Turns out MSE can be reworked into two terms:

$$\label{eq:MSE} \begin{split} \text{MSE} &= \text{Calibration term} + \\ \text{AUC term} \end{split}$$

(Both terms are such that smaller is better)

- In other words, the MSE conflates calibration and AUC;
- It is useful if you're interested in both.

Class imbalance

- In the *Titanic* example, the outcome classes are pretty evenly balanced;
- That is not typical of many applications: debt default; illness; activity; buy/don't buy; tank/dog/selfie/..; solid/liquid/gas/plasma; ...
- When at least one class has very few observations, this is called **class imbalance**.

Class imbalance

- Measures such as SEN/SPE/ACC/F1 emphasize larger classes;
- What if the smaller classes are the most interesting?

Some solutions:

- Oversampling/undersampling
- Weighting

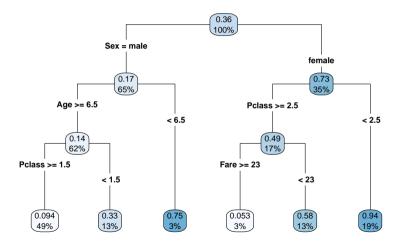
	Evaluating classifiers	Break	Short recap: trees!	Bagging	Boosting	Conclusion
00	000000000000000000000000000000000000000	•	00000	00000000	0000	00

Break

	Evaluating classifiers		Short recap: trees!	Bagging	Boosting	Conclusion
00	000000000000000000000000000000000000000	0	00000	000000000	0000	00

Short recap: Trees!

Prediction tree: wood you survive the Titanic?



Recursive partitioning

- Find the split that makes observations as similar as possible on the outcome within that split;
- **2** Within each resulting group, do (1).
 - Criteria for "as similar as possible": Purity, Reduction in MSE, ...
 - Early stopping: add after (2):
 - "unless there are fewer than n_{\min} observations in the group" (typically 10);
 - "unless the total complexity of the model becomes more than *cp*" (typically 0.05);

Break Short recap: trees! Bagging 00000

Choosing complexity

- Use recursive binary splitting to grow a large tree on the training data. stopping only when each terminal node has fewer than some minimum number of observations
- Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α .
- **3** Use K-fold cross-validation to choose α . For each $k = 1, \ldots, K$:
 - 3.1 Repeat Steps 1 and 2 on the (K-1)/Kth fraction of the training data, excluding the kth fold.
 - 3.2 Evaluate the model accuracy on the data in the left-out kth fold, as a function of α .

Average the results, and pick α to minimize the average error.

4 Return the subtree from Step 2 that corresponds to the chosen value of α .

Source: Hastie & Tibshirani

Advantages and Disadvantages of Trees

- + Trees are very easy to explain to people. (?)
- + Trees can be displayed graphically, and are easily (??) interpreted even by a non-expert
- + Trees can easily handle qualitative predictors without the need to create dummy variables.
- Trees are low bias but high variance \rightarrow generally do not have the same level of predictive accuracy as other approaches.

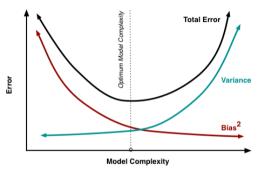
However, by **aggregating many decision trees**, the predictive performance of trees can be substantially improved.

Source: Hastie & Tibshirani

	Evaluating classifiers		Short recap: trees!	Bagging	Boosting	Conclusion
00	000000000000000000000000000000000000000	0	00000	00000000	0000	00

Bagging

Bagging: the general idea



- $\downarrow \text{bias}, \uparrow \text{variance} \rightarrow \text{Predictions}$ differ strongly and meaninglessly across training sets
- **IDEA** Use different training sets to create different $\downarrow B \uparrow V$ models, then **average the** predictions

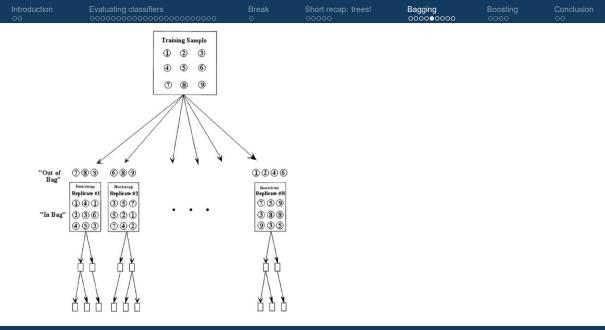
Bootstrap aggregating (bagging)

- Problem: we don't have different training sets (just one)
- Solution: "bootstrapping"

Bootstrapping for aggregation

Do the following *B* times:

- Resample *N* values **with replacement** from training sample (with *N* observations)
- Fit model (tree?) on each bootstrap sample
- On average, 2/3 of the training instances are selected
- The rest is "out-of-bag"



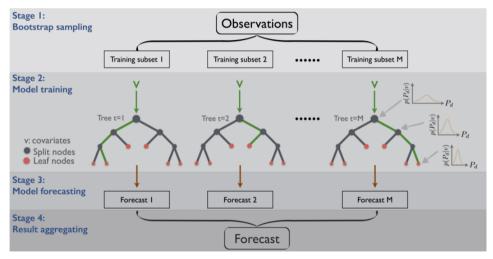
Evaluating classifiers	Short recap: trees!	Bagging ooooo●ooo	Boosting 0000	Conclusion

Bootstrap ensemble

- For new data, combine the predictions of the *B* models
- Majority vote for classification; simple average for regression,
- Useful bonus: Out-of-bag instances can serve as validation set for each model!

	Evaluating classifiers		Short recap: trees!	Bagging	Boosting	Conclusion
00	000000000000000000000000000000000000000	0	00000	000000000	0000	00

Bagged trees ("forest")



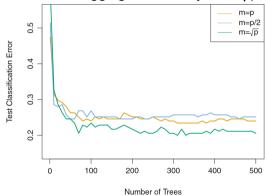
Random forest

- "Wisdom of Crowds": the collective knowledge of a diverse and independent body of people typically exceeds the knowledge of any single individual, and can be harnessed by voting.
 Hastie and Tibshirani, p. 286
- Bagged trees are not diverse and independent: they are likely to choose similar splits at the higher levels
- A random forest is bootstrap aggregated trees with a handicap: at each split, consider only *m* out of the *p* predictors → *decorrelating* the trees

Evaluating classifiers	Short recap: trees!	Bagging ooooooooo	Boosting 0000	Conclusion

Random forest

When m = p, standard bagging, but usually $m = \sqrt{p}$



ISLR, figure 8.10

	Evaluating classifiers		Short recap: trees!	Bagging	Boosting	Conclusion
00	000000000000000000000000000000000000000	0	00000	00000000	0000	00

Boosting

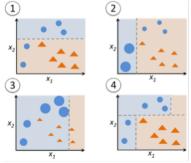
Boosting: the general idea

- $\uparrow \text{bias}, \downarrow \text{variance} \rightarrow \text{Predictions stable, but wrong for some proportion of the training data}$
- **IDEA** Fit ↑B↓V models consecutively, to parts where the previous models don't fit well
 - Learn from mistakes of the previous models
 - Average the predictions for new data: combine "weak" classifiers into powerful "committee"

	Evaluating classifiers		Short recap: trees!	Bagging	Boosting	Conclusion
00	000000000000000000000000000000000000000	0	00000	00000000	0000	00

Boosting with decision stumps

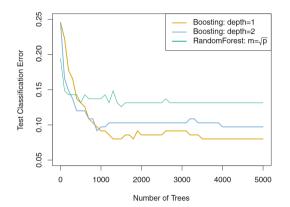
Weak learner: decision tree with 1 split ("decision stump")



https://sebastianraschka.com/faq/docs/bagging-boosting-rf.html

	Evaluating classifiers		Short recap: trees!	Bagging	Boosting	Conclusion
00	000000000000000000000000000000000000000	0	00000	00000000	0000	00

Boosting with decision stumps



ISLR, figure 8.11

00 00000 00000000 0 000000 0 0000000 0 0		Evaluating classifiers		Short recap: trees!	Bagging	Boosting	Conclusion
	00	000000000000000000000000000000000000000	0	00000	00000000	0000	0

Conclusion

- There are different classification performance metrics, suitable for different situations
- Class imbalance may affect the interpretation of classification performance
- ROC curve can be made for probabilistic classifiers
- Predicted probabilities can be calibrated
- Ensemble methods combine sets of base models (e.g., trees);
- Prediction from ensemble is average or majority vote;
- Bagging: ensemble (from bootstraps) of $\uparrow V \downarrow B$ models;
- Boosting: ensemble (from high residuals) of $\uparrow B \downarrow V$ models.
- Ensembles are very useful: often work well out of the box, state-of-the-art in many competitions

	Evaluating classifiers		Short recap: trees!	Bagging	Boosting	Conclusion
00	000000000000000000000000000000000000000	0	00000	000000000	0000	00

Have a nice day!