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1

Introduction

Missing data form a ubiquitous source of problems that most scientists or researchers
cannot escape. For example, in survey applications, such as in social sciences or in
official statistics, where vast amounts of data are collected, respondents often neglect
to answer one or more items. Although the field of missing data has been largely
developed in the past decades with survey applications in mind - Rubin’s (1987)
initiating book is not without purpose named ‘Multiple Imputation of Nonresponse
in Surveys’ - missingness occurs throughout the whole of science.

For example, in astrophysics, properties of hardly observable, distant objects are
often not directly observable. However, no matter their distance, such objects always
have neighboring objects around them and take their part in a cluster or solar system
within their galaxy. Examining such constellations of objects in space as a whole,
enables astrophysicists to deduce information about the objects of interest, or at least
quantify their properties with a certain level of confidence.

The procedure astrophysicists follow is analogous to the approach that can be
taken with missing data in survey research. Most of the times information about re-
spondents (objects) can be inferred about the people around them (solar system) or, if
needed, about the information that is observed in the data as a whole (galaxy). Draw-
ing inference based on data with missing values implies that at least some information
is observed, which conveniently redefines the problem of missingness into a problem
of incompleteness. After all, incomplete data sounds much more like a solvable puzzle
than missing data.

1.1 Drawing inference on incomplete data

Let us assume the classical research scenario where a researcher operationalizes a
problem, formulates a research question, collects data, analyzes the data and finds
an answer to the research question. Any occurrence of missing values in the acquired
dataset has serious consequences for the analysis phase, as most analyses require the
data to be completely observed. Suppose that the researcher is well aware that the
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missingness in the dataset should never be ignored - perhaps only because ignoring
the missing values will yield lower statistical power. This leaves the researcher at
a junction of two very different paths in order to obtain an answer to the research
question.

The first path leads to the answer directly. In general we could say that estimation
procedures that follow the first path, such as maximum likelihood, weighting and full
Bayesian estimation techniques, aim to identify the population parameters that are
most consistent with the observed data. These estimation approaches adhere to some
sort of model, which may be implicit in the case of weighting, or explicit in the
case of maximum likelihood or Bayesian estimation. To allow for the missing data
during analysis, the estimation methods must be adapted to deal with incomplete
data and that missing values need to be integrated out of the analysis model. As
a consequence, some of the cases in the data will contribute more information to
answering the research question than others.

The second path, imputation, first solves the missing data problem. With impu-
tation, some estimation procedure is used to impute (fill in) each missing datum,
resulting in a completed dataset that can be analyzed as if the data were completely
observed.

When only one value is imputed (single imputation), uncertainty about the im-
putations is not reflected in the imputed data set and specific methods for variance
estimation that take imputed values into account need to be employed. As a more
versatile way to solve this, uncertainty about the imputed values can be taken into
account by performing multiple imputation (MI). With MI, each missing datum is
imputed m ≥ 2 times, resulting in m completed datasets. At least 2 imputations
are warranted to reflect the uncertainty about the imputations, although performing
more imputations is often advisable. The m datasets are then analyzed by standard
procedures and the analyses are combined into a single inference.

In this dissertation, only MI is considered. The choice for MI is based on the
following arguments. First, MI is quickly becoming more popular and is easily one of
the most utilized methods for dealing with nonresponse in many domains of statistics.
This can also be seen in the growing number of books and conferences that consider
MI. A possible explanation for MI’s popularity has to do with separating the missing
data problem from the analysis stage. As a result, inference using MI is relatively
straightforward to obtain and easy to comprehend, properties that may be particularly
appealing to applied researchers.

Second, one can imagine that obtaining inference with direct estimation procedures
becomes increasingly more complicated when modeling the data becomes more chal-
lenging, such as with large amounts of variables or complex univariate or multivariate
distributions. With multiple imputation, such complexities are mostly applicable to
the imputation stage, making the analysis stage relatively straightforward. In other
words, once satisfactory imputations are obtained it is not too difficult to answer the
research question.
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1.2 Obtaining plausible imputations

In this dissertation only plausible imputations - imputations that could be real values
if they had been observed - are considered to be satisfactory. This definition of plausi-
bility considers the position of imputed values, given the data. For ordinary datasets,
this means that plausibility must be considered in two directions: the incomplete
variable (column) and the remainder of the measurements of the respondent (row).
In other words, plausibility should consider the imputed value and the relation that
imputed value has to other (observed and imputed) values in the data. For example,
if variables sum up to a certain total, only those imputations are plausible that obey
the structure of the sum.

For continuous data, the normal linear regression imputation model is a very
basal approach to obtaining multiply imputed values. With normal linear regression
imputation, imputations are drawn (with error) from a regression model, such that
incomplete outcomes are predicted based on observed (or imputed) values in a set of
predictors (see e.g. (Rubin, 1987, p. 167)). Assumptions about the type of data and the
shape of the distributions in the data are explicitly made and deviations from these
assumptions may yield invalid inference. In practice, other types of data are often
encountered and the normal imputation model may not yield plausible imputations.

When performing multiple imputation, there are properties of the data that one
would like to preserve during imputation. Sometimes these properties are not directly
visible (e.g. intricate multivariate relations) and sometimes these properties are very
explicit (such as summations or polynomials). Preserving such data properties limits
the space where imputations can be sampled from. As a result, restrictions are put
on the model that can be used for obtaining plausible imputations.

1.3 Aim

This dissertation focuses on finding plausible imputations when there is some restric-
tion posed on the imputation model. In these restrictive situations, current imputation
methodology does not lead to satisfactory imputations. The restrictions, and the re-
sulting missing data problems are real-life situations that are frequently encountered
across different domains of statistics, such as official statistics, social sciences, geology
and medicinal sciences. More specifically, imputation strategies that yield plausible
imputations are considered for the following restrictive problems.

First, in official statistics highly skewed semicontinuous (or zero-inflated) data are
frequently encountered. When imputing these data, the non-negative mixture of con-
tinuous values and the point mass (often at zero) need to be considered in such a
way that imputations fall within the plausible range of values. Current imputation
approaches use multi-step approaches that depend on data-transformations to con-
form the incomplete data to the imputation model. A single-step imputation solution
that does not require data transformations and leads to valid inference and plausible
imputations is discussed in Chapter 2.
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Second, in many domains in statistics, multilevel (or clustered) data are often
encountered. With multilevel data, groups of respondents share common characteris-
tics and can be clustered into classes. This class structure, often summarized in the
intraclass correlation coefficient, needs to be taken into account when imputing such
data. An imputation approach that provides a straightforward solution for obtaining
plausible imputations while taking the multilevel structure of the data into account
is discussed in Chapter 3.

Third, applied researchers frequently use squared terms in their analysis models. It
is known that the imputation model should embrace all relations of scientific interest.
When generating plausible imputations, the relation between the original variable
and its squared counterpart needs to be preserved. After all, a squared value that has
no relation to its square root, can never be deemed plausible. Chapter 4 proposes an
imputation technique for obtaining plausible imputations when the imputation model
contains squared terms.

Fourth, in many domains in statistics, compositional data structures are encoun-
tered. Compositional data can be defined as a set of parts that obey a certain edit
restriction, such that the parts have to sum up to a certain total. Imputing com-
positional data is challenging because imputations must obey the restrictions in the
data while remaining strictly non-negative. Chapter 5 proposes an imputation ap-
proach that can handle intricately nested compositional data and provides plausible
imputations that adhere to the compositional structure.

Finally, when evaluating imputation approaches, simulations studies are often
used. Data are usually sampled from some sort of theoretical distribution that serves
as the population. If this is not possible, design-based simulation studies are per-
formed, where data is usually sampled from some ‘true’ dataset of sufficient size.
Both simulation approaches introduce sampling variance, which is not of specific in-
terest when evaluating imputations. Chapter 6 demonstrates a simplification of the
conventional pooling rules for multiple imputation in situations where sampling vari-
ance is not of interest. These pooling rules are also applicable in situations where the
size of the population is restricted and essentially all units in the population have
been observed.

1.4 Imputation strategies for multivariate data

Multiple imputation for multivariate data comes in two main flavors: joint modeling
(JM) and fully conditional specification (FCS). With JM, imputations are drawn
from an assumed joint multivariate distribution. Often a multivariate normal model
is used for both continuous and categorical data, although other joint models have
been proposed (see e.g. Olkin and Tate, 1961; Van Buuren and van Rijckevorsel,
1992; Schafer, 1997; Van Ginkel et al., 2007; Goldstein et al., 2009; Chen et al., 2011).
Joint modeling imputations generated under the normal model are usually robust
to misspecification of the imputation model (Schafer, 1997; Demirtas et al., 2008),
although transformation towards normality is generally beneficial.
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Contrary to JM, multiple imputation by means of FCS does not start from an
explicit multivariate model. With FCS, multivariate missing data is imputed by uni-
variately specifying an imputation model for each incomplete variable, conditional
on a set of other (possibly incomplete) variables. The multivariate distribution for
the data is thereby implicitly specified through the univariate conditional densities
and imputations are obtained by iterating over the conditionally specified imputation
models.

The general idea of using conditionally specified models to deal with missing data
has been discussed and applied by many authors (see e.g. Kennickell, 1991; Raghu-
nathan and Siscovick, 1996; Oudshoorn et al., 1999; Brand, 1999; Van Buuren et al.,
1999; Van Buuren and Oudshoorn, 2000; Raghunathan et al., 2001; Faris et al., 2002;
Van Buuren et al., 2006). Comparisons between JM and FCS have been made that
indicate that FCS is a useful and flexible alternative to JM when the joint distribution
of the data is not easily specified (Van Buuren, 2007) and that similar results may be
expected from both imputation approaches (Lee and Carlin, 2010).

In this dissertation, new methodology based on FCS is introduced, although com-
parisons are occasionally made to imputation approaches that utilize some form of
joint modeling. The choice for FCS is based on applicability, by avoiding the com-
plex specification and estimation of multivariate models that observe different kinds
of restrictions. Because the multidimensional imputation problem is split in multi-
ple unidimensional imputation problems, it is relatively simple to specify imputation
models that do not conform to standard multivariate distributions. Moreover, this
flexibility in specifying univariate imputation models makes it much easier to adapt
imputation models to accommodate for some form of restriction. As a result, the
incomplete data can be more efficiently addressed and unique data features can be
preserved. For example, in official statistics many restrictions are posed on survey or
register data, such as bounds (no unrealistic human age), strict non-negativity (no
negative incomes) and conditional restrictions (girls under twelve years of age are not
allowed to have children, nor can they be married).

1.5 Current modeling practice

A straightforward implementation of FCS can be found in the MICE algorithm pro-
posed by Van Buuren and Groothuis-Oudshoorn (2000, 2011). The MICE algorithm
is a Markov Chain Monte Carlo (MCMC) method, which becomes a Gibbs sampler
in situations where the conditional densities are said to be compatible. Compatibil-
ity is reached when the joint multivariate distribution has the separate conditional
distributions as its conditional densities. For the MICE algorithm, the joint distri-
bution is only implicitly known and compatibility may be difficult to prove. In some
situations, compatibility may not actually exists. However, in practice FCS seems
to be robust when compatibility conditions are not met (Van Buuren et al., 2006).
Recently, Bartlett et al. (2014) introduced a substantive model compatible FCS (SMC-
FCS) that ensures that each covariate is imputed from a model which is compatible
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with the substantive model. This may be particularly of interest when the substantive
analysis model contains non-linearities or interactions.

The MICE algorithm starts with randomly drawing imputations from the observed
data. Subsequently, the variables are imputed in a variable-by-variable approach. A
single iteration of the algorithm cycles through all incomplete variables.

The number of iterations for the MICE algorithm has to be carefully chosen.
In most situations, a low number of iterations appears to be enough (Brand, 1999;
Van Buuren et al., 1999), but slow convergence can occur if, for example, the amount of
missing data is large or if there is high autocorrelation in the imputation chains. After
imputation, convergence of the m multiple imputation chains should be investigated.

The number of imputations is also of importance when doing multiple imputation.
Usually, the default amount of imputations in software is set to be as low as three
to five. Many authors have investigated the role of m with regard to several criteria,
such as the confidence interval, statistical power and the proportion of missingness
attributable to the nonresponse (see e.g. Royston, 2004; Graham et al., 2007; Bodner,
2008; White et al., 2011). The work by these authors suggests that it may often be
beneficial to set the amount of imputations much larger, although it comes at a cost
in terms of data storage and computational time.

In general it holds that using a higher m is always better. This does not nec-
essarily mean that outcomes from resulting analyses will be better. In fact, Schafer
(1997) suggests that resources can often be better spent and Schafer and Olsen (1998)
indicate that in most situations there is only little advantage to analyzing more than
a few imputed datasets. To save computation time and resources, Van Buuren (2012)
suggests to set m = 5 during model building and to increase m only for the ‘actual’
imputation stage. However, with computers becoming increasingly faster and data
storage solutions becoming more accommodative of large datasets, one can imagine
that today’s drawbacks in performing more imputations are becoming increasingly
less important in the future.

1.6 Choosing an imputation model

The FCS framework allows variables to be imputed under an appropriate model, given
the data. For example, continuous variables can be imputed by a Bayesian normal
linear imputation model, dichotomous variables by a logistic model and unordered
categorical variables can be imputed by a polytomous regression model. In all three
applications, imputations are drawn under a formulated model and, like with all mod-
eling efforts with missing data, imputations may be susceptible to misspecification of
that imputation model. Although many misspecification problems can be minimized
by data transformation beforehand (and backtransforming the imputed data after-
wards), it would be preferred if one imputation model could allow for multiple types
of data.

This dissertation focuses mainly on imputations generated by means of predictive
mean matching (PMM). With PMM, bayesian normal linear regression is used to
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obtain predicted values for the observed and missing values in a variable, but the pre-
dicted values are not used as imputations directly. Instead, observed and unobserved
predictions are ‘matched’ - usually by minimizing a difference on the predicted values
- and the corresponding observed value is chosen as the imputation. This strategy
can often be effectively applied to data of all measurement levels, while allowing for
imputations that will always fall within the range of plausible observed values (no
negative age or income, no unrealistic age). Matching the predicted values and select-
ing the corresponding observed value as an imputation makes it also an interesting
candidate for compound data distributions.

Being able to impute different types of variables by a single imputation strategy
is very convenient in practice and should substantially decrease the modeling effort
associated with FCS. Also, when sampling from the observed values, there is no need
for data transformations to accommodate the imputation model, nor is there a need
for postprocessing the imputed values to conform to natural restrictions in the data.
This allows for a faster imputation process, a property that is particularly appealing
to fields where timely publication of results is considered crucial, such as in official
statistics.

Drawing imputed values from the set of observed values should always be done with
caution. In situations where the range of observed values in the incomplete sample
differs from the range of possible values in the population, imputations generated
by strategies like PMM may yield biased inference. Strict modeling approaches, such
as bayesian linear regression imputation, may still lead to plausible inference in such
situations. Therefore, imputed data should never be taken for granted and imputations
should always be critically evaluated.

1.7 Evaluating imputations

Evaluating imputations is of crucial importance and imputed values should never
be considered without close examination. For instance, when using an algorithm to
generate imputations, the convergence of that algorithm should always be evaluated.
A straightforward approach to monitoring convergence is plotting some statistic of
interest (usually the mean and standard deviation of the imputed data are used) for
each of the multiple imputation chains. The pattern over the iterations should be free
of trend, or, in the case of slow convergence, should have reached a stable plateau.

Besides checking convergence of the algorithm, the imputation model and the
resulting imputed data should be evaluated too. Most often imputations are generated
by means of models that are fitted to the observed data. The fit of these models can
be assessed by standard model evaluation tools, such as Q-Q plots and information
criteria. Such model evaluation tools generally focus on the fit between the data and
the model. However, evaluating the distributional discrepancy between observed and
imputed data can often be more informative (Van Buuren, 2012).

Studying the discrepancy between observed and imputed data is a valuable tool
to assess plausibility of imputations. Plausible imputations are those that conform to
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the distribution of the observed data, not in a sense that the distributions are equal,
but rather in the sense that imputations could have been real values had they been
observed (Van Buuren, 2012). To evaluate plausibility of imputations, (conditional)
distributions can be compared and means, variances, scales and relations between
variables can be evaluated. Finally, Abayomi et al. (2008) raise a valid point when
they state that researchers should always use a standard of reasonability. Whether
observed and imputed values differ from one another or not, the (lack of) discrepancies
should always make sense in the context of the problem being studied.

1.8 Outline of the dissertation

This dissertation focuses on plausible value imputation for situations where some re-
striction is posed on the data. A distinction can be made between three parts. Part
I considers univariate strategies for multiply imputing multivariate data by means of
FCS. In some situations it can be more convenient to impute two variables at the
same time to preserve relations in the data that can otherwise not be preserved. Part
II considers such bivariate imputation strategies to deal with missing values. Part III
does not consider the imputation process itself, but rather focuses on pooling multiple
imputations to obtain a single inference in situations where the size of the population
is restricted.



Part I

Univariate imputation





2

Predictive Mean Matching Imputation of
Semicontinuous Variables

Summary. Multiple imputation methods properly account for the uncertainty of missing
data. One of those methods for creating multiple imputations is predictive mean matching
(PMM), a general purpose method. Little is known about the performance of PMM in
imputing non-normal semicontinuous data (skewed data with a point mass at a certain value
and otherwise continuously distributed).We investigate the performance of PMM as well as
dedicated methods for imputing semicontinuous data by performing simulation studies under
univariate and multivariate missingness mechanisms. We also investigate the performance on
real-life datasets.We conclude that PMM performance is at least as good as the investigated
dedicated methods for imputing semicontinuous data and, in contrast to other methods, is the
only method that yields plausible imputations and preserves the original data distributions.

2.1 Introduction

Semicontinuous variables consist of a (usually fairly large) proportion of responses
with point masses that are fixed at some value and a continuous distribution among
the remaining responses. Variables of this type are often collected in economic appli-
cations, but can also be found in medical applications. Examples of semicontinuous
variables with point masses at zero are income from employment, number of employ-
ees or bacterial counts. Semicontinuous variables differ from censored and truncated
variables in that the data represented by the zeros, are bona fide and valid, as opposed
to the data being proxies for negative values or missing responses (Schafer and Olsen,
1999)

This chapter is published as Vink, G., Frank, L. E., Pannekoek, J., & Van Buuren, S.
(2014). Predictive mean matching imputation of semicontinuous variables. Statistica Neer-
landica, 68 (1), 61-90.
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2.1.1 Imputation methods for semicontinuous data

In the past decades, the field of imputation has made a major advance. Many model-
based imputation procedures have been developed for multivariate continuous and
categorical data (Little and Rubin, 2002; Rubin, 1987; Schafer, 1997). Univariate
models for modeling semicontinuous data have been developed as well as the Tobit
model (Amemiya, 1984; Tobin, 1958) and selection models (Heckman, 1974, 1976).
The two-part model seems to be particularly interesting for modeling semicontinuous
data. This model presents the data as a two-part mixture of a normal distribution and
a point mass (Schafer and Olsen, 1999; Olsen and Schafer, 2001), thereby decomposing
the semicontinuous observations into two variables that can be modeled in succession.
The two-part model can benefit from transforming the continuous part of the data to
normality (White et al., 2011).

Javaras and Van Dyk (2003) introduced the blocked general location model
(BGLoM), designed for imputing semicontinuous variables. The BGLoM incorporates
a two-part model in the general location model. Expectation-maximization and data
augmentation algorithms for generating imputations under the BGLoM have been
introduced by Javaras and Van Dyk (2003).

The methods described earlier are based on the multivariate normal distribution.
The normal distribution, however, may not accurately describe the data, potentially
leading to unsatisfactory solutions (Van Buuren, 2012), which stresses the need for a
method without distributional assumptions.

Nonparametric techniques, such as hot-deck methods, form an alternative class of
methods to create imputations. In hot-deck methods, the missing data are imputed
by finding a similar but observed record in the same dataset, whose observed data
serve as a donor for the record with the missing value. Similarity can be expressed, for
example, through the nearest-neighbor principle, which aims to find the best match
for a certain record’s missing value, based on other values in that same record.

A well-known and widely used method for generating hot-deck imputations is pre-
dictive mean matching (PMM)(Little, 1988), which imputes missing values by means
of the nearest-neighbor donor with distance based on the expected values of the miss-
ing variables conditional on the observed covariates.

Yu et al. (2007) investigated general purpose imputation software packages for mul-
tiply imputing semicontinuous data. Among the software investigated were routines
and packages for SAS [PROC MI, PROC MIANALYZE, IVEware (Raghunathan et al.,
2002)], R [mice (Van Buuren and Groothuis-Oudshoorn, 2011) and aregImpute]

and Stata [ice (Royston, 2005)]. They concluded that procedures involving PMM
performed similar to each other and better than the procedures that assumed nor-
mal distributions. PMM not only yielded acceptable estimates, but also managed to
maintain underlying distributions of the data (Heeringa et al., 2002; Yu et al., 2007).

Although the research by Yu et al. (2007) is useful, it yields only limited insight in
the reasons why PMM works for semicontinuous data. Yu et al. (2007) focus on read-
ily available software implementations, setting aside methods specifically designed for
semicontinuously distributed data (Javaras and Van Dyk, 2003; Schafer and Olsen,
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1999; Olsen and Schafer, 2001). Even the procedures implementing PMM had differ-
ent performances, indicating that a distinction must be made between methods and
software implementations.

The list of software, as described by Yu et al. (2007) is outdated. New algorithms
and packages with support for semicontinuous data have emerged, such as the R-
packages mi (Su et al., 2011) and VIM (Templ et al., 2011). Both methods use an
approach to semicontinuous data that is based on the two-part model. mi, for example,
uses a two-part model where the continuous part is imputed based on log-transformed
data. The iterative robust model-based imputation (irmi) algorithm from the package
VIM mimics the functionality of IVEware (Raghunathan et al., 2002), but claims
several improvements with respect to the robustness of the imputed values and the
stability of the initialized values (Templ et al., 2011).

2.1.2 Goals of this research

Little is known about the practical applicability of PMM on semicontinuous data, and
how the method compares to techniques that are specifically designed to handle these
types of data. Certain characteristics, such as sample size, skewness, the percentage
of zeros and the number of predictors, as well as the strength of relations in the data
may play a vital role in the performance of PMM.

We investigate how PMM compares to dedicated methods for imputing semicon-
tinuous data. We thereby concentrate on a comparison between PMM, the two-part
model, the BGLoM and the algorithms mi and irmi. More in particular we investigate
how performance is affected by skewness, sample size, the amount of zeros, the per-
centage missingness and the relations in the data. We also look into the effect of the
missing data mechanism on imputation methods for imputing semicontinuous data.
We investigate the aforementioned methods in the presence of univariate and multi-
variate missingness. And, finally, we wonder: is PMM at least as good as a dedicated
method when imputing semicontinuous data?

2.2 Imputation methods

2.2.1 Notation and preliminaries

Let Y = (Yobs, Ymis) be an incomplete semicontinuous variable with n sample units,
where Yobs and Ymis denote the observed values and the missing values in Y , respec-
tively. Further, X = (X1, ..., Xj) is a set of j fully observed covariates, where Xobs

and Xmis correspond to the observed an missing parts in Y . We use notation nobs
for the number of sample units with observed values of Y and nmis for the number
of sample units with missing values. Finally, let R be a response indicator that is 1 if
Y is observed and 0 if Y is missing.

To impute missing values in Y and to asses variances and confidence intervals for
estimators based on the imputed data we use multiple imputation methods. These
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methods can be described by a Bayesian approach. In case of a parametric model
for the variable to be imputed, the parameters of the model are viewed as random
variables to which a prior distribution is assigned. Most commonly, in this context,
an uninformative prior is used. Then, taking the observed data into account, the in-
formation on the parameters is updated, leading to the posterior distribution for the
parameter vector. For the monotone missing data considered here, multiple imputa-
tions for the missing values can be obtained by first drawing a value from the posterior
distribution of the parameter vector and then drawing a value for each missing data
point from the distribution of the missing data given the drawn value of the param-
eter vector and the observed data. When this procedure is repeated, say m times,
m multiple imputations are obtained for each missing value that are draws from the
posterior predictive distribution of the missing data.

The imputation methods discussed in the remainder of this section make use of
two parametric models, the linear regression model and the logistic regression model.
The linear regression model for a target variable Y can be written as

Yi = XT
i β + εi,

with Xi the vector of values from the j covariates for unit i, β the corresponding
regression coefficient vector and εi a normally distributed random error with expec-
tation zero and variance σ2. Parameter estimates β̂, ε̂i and σ̂2 of this model can be
obtained by ordinary least squares using the units for which both Y and X are ob-
served. Using uninformative priors for β and σ2 the posterior distribution for β is
N(β̂, V (β̂)), i.e. normal with mean β̂ and covariance matrix V (β̂) = σ2(XT

obsXobs)
−1

and the posterior distribution for σ2 is given by ε̂T ε̂/A, with A a chisquare variate
with nobs − r degrees of freedom. A draw from the posterior predictive distribution
for a missing value for unit i can be obtained by drawing values σ2∗ and β∗ from their
posterior distributions and then drawing a value for Ymis,i from N(XT

i β
∗, σ2∗).

The logistic regression model for a binary (0,1) target variable W , can be expressed
as

log
πi

1− πi
= XT

i γ,

with γ the corresponding regression coefficient vector and πi the probability of ob-
serving Wi = 1 or, equivalently, πi = E[Wi]. An expression for πi in terms of the linear
predictor XT

i γ is obtained from the inverse logit transformation: πi = expit(XT
i γ) =

exp(XT
i γ)/[1 + exp(XT

i γ)]. Using an uninformative prior for γ, the corresponding

posterior distribution is approximately N(γ̂, V̂ (γ̂)) with γ̂ the maximum likelihood
estimator for γ and V̂ (γ̂) the associated covariance matrix. A draw from the posterior
predictive distribution of a missing value Wmis,i can be obtained by first drawing a
value γ∗ from the posterior distribution for γ and then drawing a value W ∗i from a
Bernoulli distribution with parameter π∗ = expit(XT

i γ
∗)

2.2.2 Predictive mean matching

Multiply imputing Ymis by means of PMM is performed by the following algorithm:
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1. Use linear regression of Yobs givenXobs to estimate β̂, σ̂ and ε̂ by means of ordinary
least squares.

2. Draw σ2∗ as σ2∗ = ε̂T ε̂/A, where A is a χ2 variate with nobs−r degrees of freedom.

3. Draw β∗ from a multivariate normal distribution centered at β̂ with covariance
matrix σ2∗(XT

obsXobs)
−1.

4. Calculate Ŷobs = Xobs β̂ and Ŷmis = Xmis β
∗.

5. For each Ŷmis,i, find ∆ = |Ŷobs − Ŷmis,i|.
6. Randomly sample one value from (∆(1), ∆(2), ∆(3)), where ∆(1), ∆(2) and ∆(3) are

the three smallest elements in ∆, respectively, and take the corresponding Yobs,i
as the imputation.

7. Repeat steps 1 through 6 m times, each time saving the completed data set.

The default of the function mice in the R-package mice performs multiple imputation
(m = 5) according to the description of this algorithm. The regression function mi.pmm

in mi also performs PMM imputation, but calculates∆ = min|Ŷobs−Ŷmis,i| and selects
the corresponding Yobs,i as the imputation.

2.2.3 Two-part imputation

Let Y be decomposed into two variables (Wi, Zi), where Yi denotes the ith value in
Y , giving

Wi =

{
1 if Yi 6= 0
0 if Yi = 0

. (2.1)

Zi =

{
g(Yi) if Yi 6= 0
0 if Yi = 0

. (2.2)

where g is a monotonically increasing function, chosen such that the non-zero values in
Yi are approximately normally distributed (Manning et al., 1981; Duan et al., 1983;
Schafer and Olsen, 1999). Multiply imputing Ymis by means of two-part multiple
imputation can be done by the following algorithm as described by Schafer and Olsen
(1999):

1. Use logistic regression on Wobs given Xobs to estimate γ̂, V̂ (γ̂).
2. Draw γ∗ from a multivariate normal distribution centered at γ̂ with covariance

matrix V̂ (γ̂) .
3. Draw Wi from a Bernoulli distribution with probability π∗i = expit(XT

i γ
∗) inde-

pendently for Wmis .
4. For all Wi 6= 0, use linear regression of Zobs given Xobs to estimate the least

squares estimates β̂ and residuals ε̂i = Zi −XT
i β̂ where i ∈ obs.

5. Draw a random value of σ2∗ as σ2∗ = ε̂T ε̂/A, where A is a χ2 variate with nobs.1−r
degrees of freedom, with nobs.1 the number of observed elements given Wi = 1.

6. Draw β∗ from a multivariate normal distribution centered at β̂ with covariance
matrix σ2∗(XT

obsXobs)
−1.
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7. Draw Zi from a normal distribution with mean µ∗i = XT
i β
∗ and variance σ2∗

independently for all Zmis.
8. Set Yi = 0 if Wi = 0 and Yi = g−1(Zi) if Wi = 1 for all Ymis.
9. Repeat the steps m times, each time saving the completed data set. Note that

steps 1 and 4 do not change, and need to be done only once. Further, steps 4
through 7 are performed on the subset Wi = 1.

A list of software that incorporates a two-part model includes (but is not limited to)
IVEware, mi and VIM. Note that these software packages may use different approaches
to the two-part model as well as different algorithms, but all use a two-part approach.
For example, mi log-transforms the continuous part of the data and the VIM routine
irmi uses robust estimation methods.

2.2.4 Imputing through the BGLoM

The BGLoM by Javaras and Van Dyk (2003) extends the general location model
(Olkin and Tate, 1961) by incorporating a two-level model. The precise model is
too intricately detailed to be summarized here. Instead, well-documented EM and
data augmentation algorithms can be found in Javaras and Van Dyk (2003). We use
software and script, kindly provided by the authors, in our simulations.

2.3 Univariate simulation

In order to compare the performance of the imputation methods at hand, we use a
design-based approach wherein we create a finite population from which we repeatedly
sample. We make use of a design-based simulation because there are no statistical
models that would help us generate multivariate semi-continuous data with given
dependencies among the variables and fixed underlying univariate and multivariate
properties. Consequently, we have chosen to generate data with known properties,
and subsample from these. This procedure is popular in official statistics (see e.g.,
Chambers and Clark (2012); Alfons et al. (2010a,b)) and is often used in the case of
performance assessment of imputation procedures in this field.

2.3.1 Generating populations

We separate the simulations on the level of the point mass and generate two popula-
tions. Both populations have size N = 50.000, but the populations differ in the size
of the point mass: 30% and 50% point masses at zero, respectively. Note that when
the size of the point mass changes, estimates such as the mean, median and variances
change as well.
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Step 1: Generating semicontinuous data

For each population, we start by creating a normally distributed variable Q ∼ N(5, 1)
to which we assign a point mass at zero by drawing from a binomial distribution with
a 30% (population 1) or 50% (population 2) chance for any value in Q to take on the
point mass. Please note that Q is now a semicontinuous variable wherein the contin-
uous part is normally distributed. The zeros in Q are initially completely at random,
but a dependent relation with the covariate will be induced by transformation.

Step 2: Generating covariates

In order to measure the influence of the relation with the covariate, we want to create
covariates with varying correlations with the simulation population Q. To do so, we
defined the correlation matrix for four covariates and the semicontinuous variable Q
as

RQX =


Q X1 X2 X3 X4

1
.80 1
.50 .4 1
.30 .24 .15 1
0 0 0 0 1

 .

Using these correlations, we constructed standard deviation scores (SDSXij ), with
mean zero, for the covariates according to

SDSXij
= SDSQi

∗ ρQXj
+ εi

where ρQXj
is the correlation between Q and Xj obtained from RQX , SDSQi

is the
standardized score of Q (with mean zero and standard deviation 1) and εi is a random

draw from the normal distribution N(0,
√

1− ρ2Y Xj
).

Step 3: Generating target variables

To create semicontinuous target variables, we used the following transformations of
Q:

Y1 = Q

Y2 = Q2/max{Q}
Y3 = Q4/max{Q3}
Y4 = Q8/max{Q7}
Y5 = Q12/max{Q11},

thereby varying the degree of skewness while keeping the variables in the same scale.
For example, the continuous parts in Y1 and Y5 are normally distributed and extremely
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skewed, respectively. Creating transformed skewed variables also introduces extreme
values, which in turn may severely impair a methods imputation performance. Figure
2.1 displays histograms for Y1 through Y5 with a 50% point mass at zero.

Combining the set of transformed variables Y = (Y1, ..., Y5) with the variables in
X = (X1, ..., X4) provides us with a dataset with different bivariate relations between
any of the variables in Y and the covariates X. Moreover, because of the different
degrees of skewness between the variables in Y , the bivariate relations between any of
the variables in X and the target variables Y also differ. For example, the bivariate
relations between X1 and Y1 are stronger than the relations between X2 and Y1, and
the relations between X1 and Y2 are stronger than the relations between X1 and Y3.
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Fig. 2.1. Generated semicontinuous variables (Y1 − Y5) with a point mass at 50%
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Please note that we investigate the univariate problem, meaning that we impute each
of the semicontinuous variables (e.g., Y1) based on one of the covariates (e.g., X1).

2.3.2 Sampling from the population

To investigate the performance of the methods under different sample sizes, we ran-
domly sample from the combined set of Y and X for each population. We used samples
of size 100, 500 and 1000, respectively. Other sampling schemes are beyond the scope
of this research, because we are mainly interested in the missing data process and not
in the sampling process.

2.3.3 Generating missingness

Because we investigate the univariate case, we may impose the missingness for each
sample in all Y simultaneously. We created missingness in our samples according to
the following missing at random (MAR) mechanism:

P (R = 0|Yobs, Ymis, Xj) = P (R = 0|Yobs, Xj)

by using a random draw from a binomial distribution of the same length as Y and of
size 1 with missingness probability equal to the inverse logit

P (R = 0) =
ea

(1 + ea)
.

In the case of left-tailed MAR missingness, a = (−X̄j + Xij)/σXj
gives 50% miss-

ingness, where σXj indicates the standard deviation of variable Xj . For right-tailed
MAR missingness, this can be achieved by choosing a = (X̄j − Xij)/σXj . Choosing
a = .75− [(X̄j−Xij)/σXj

], or a = −.75+ [(X̄j−Xij)/σXj
], gives 50% centered MAR

missingness or 50% tailed MAR missingness, respectively. Adding or subtracting a
constant moves the sigmoid curve, which results in different missingness proportions.

The samples in which missingness was imposed, were imputed and evaluated.
Separate simulations were done for 25% and 50% missingness per variable. All sim-
ulations have been carried out in R 2.13 and are repeated 100 times. The function
mice(data, method = "pmm") from the R-package mice (version 2.13) (Van Buuren
and Groothuis-Oudshoorn, 2011) was used for PMM.

A custom adaptation of mice was developed for two-part imputation which uses
mice(data) with method specification method = "logreg" for the binary indicator
and method = "norm" for the continuous part. After the final iteration of the algo-
rithm a post processing command is parsed which sets all zeros from the imputed bi-
nary indicator to zeros in the continuous data. The function mi() from the R-package
mi (version 0.09-18) was used to impute the object which has been pre-processed by
the function mi.preprocess(data). Finally, the function irmi(data) with semicon-
tinuous columns indicated as mixed from the R-package VIM (version 3.0.1) was used
for imputations based on the irmi algorithm.
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2.3.4 Evaluation of imputations

In the case of a simulated dataset, evaluations can be done because ‘truth’ is known.
In case of a real-life dataset, containing observed missingness, this cannot be done,
because the actual values are unknown. It is therefore necessary to check the imputa-
tions in real-life datasets by means of a standard of reasonability: differences between
observed and imputed values and distributional shapes can be checked to see whether
they make sense given the particular dataset (see Abayomi et al. (2008) for more
information on this subject).

We evaluate the quality of imputations by assessing the following criteria: bias of
the mean, median and correlation, coverage of the 95% confidence interval of the mean,
the size of the point mass, preservation of distributional shapes, and the plausibility
of the imputed data. We asses plausibility by looking whether the imputed values are
realistic given the observed data, For example, could they have been observed if the
data were not missing.

2.4 Univariate Results

2.4.1 Bias of the mean

Tables 2.1 and 2.2 display biases in the mean for Y1 through Y2 after imputation given
the covariates X1 and X4, respectively. Bias of the mean is defined as the difference
between the recovered mean and the population mean. From these tables, it can be
seen that PMM and the two-part model estimate the mean very accurately. The bias
from the population mean for these methods is very low, regardless of the varying
simulation conditions. However, the BGLoM, mi and irmi seem somewhat biased in
certain cases. The bias of the BGLoM depends on the missingness mechanism and is
especially visible in the case of left-tailed MAR-missingness. Also, observe that the
bias depends on the size of the point mass. It seems that the BGLoM overestimates
the smaller point masses, thereby making the data more semicontinuous than it should
be. Especially when combined with a ‘weaker’ covariate, mean biases for the BGLoM
become much larger when the size of the point mass decreases.

The bias of mi is larger for right-tailed and left-tailed MAR-missingness, although
this difference disappears when the variable becomes more skewed. For the non-
correlating covariate (X4), all biases for mi are very small.

In contrast, the bias of the mean for irmi is very small for a high-correlating
covariate but very large for the non-correlating covariate.

For all methods, the absolute bias decreases when the variable with missingness
become skewed, that is, for Y2 through Y5. This, however, is to be expected, because
with more-skewed variables, means and variances are closer to zero than in the case of
less-skewed variables (see Figure 2.1). For all three methods, bias increases with the
percentage of missingness, but this effect is much more pronounced for the BGLoM
and for mi. The bias of the mean of mi for simulations with less (25%) missingness is
comparable to the bias of the mean of PMM (not shown).
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2.4.2 Bias of the correlation with the covariate

Figure 2.2 displays the difference between the true correlation and the recovered
correlation (correlation bias). Correlation bias is smaller for PMM, irmi and the two-
part model, than for the BGLoM, even for skewed semicontinuous variables. However,
when variables become more skewed (e.g., in the case of Y4 and Y5), correlations for
PMM and the two-part model tend to be overestimated. irmi correlations are always
overestimated. The amount of overestimation increases for variables that are more
skewed. PMM, irmi and the two-part model are clearly sensitive to extreme skewness,
for example, in Y4 and Y5.

mi produces large correlation bias even in the case of Y1 and there does not seem to
be any relation to the missingness mechanisms. For mi it shows that the combination
between skewed data and tailed MAR missingness systematically results in large cor-
relation bias. For Y5 we note that besides the much larger bandwidth, the maximum
bias of the correlation for mi is smaller than the maximum bias of any other method.

The results and findings are similar for the uncorrelated covariate X4 (not shown).
For all three methods, it holds that correlation biases become smaller when sample

Table 2.1. Univariate simulation results for X1 over 100 simulations. The table depicts
bias of the mean, coverage rate for the mean, CI width and the estimated percentage of
zeros obtained using different imputation methods and different missingness mechanisms for
semicontinuous variables Y1 through Y3. All cases represent a sample size of n=500 and 50%
MAR missingness.

2-Part BGLoM PMM MI IRMI
pm mar bias cov ciw zero bias cov ciw zero bias cov ciw zero bias cov ciw zero bias cov ciw zero

Y1

0.3 Left 0.00 0.96 0.55 0.30 -0.38 0.20 0.56 0.38 -0.01 0.97 0.55 0.30 0.19 0.88 0.81 0.26 -0.04 0.79 0.44 0.31
0.3 Mid -0.04 0.95 0.55 0.31 -0.08 0.97 0.58 0.32 -0.01 0.94 0.51 0.30 -0.05 0.91 0.62 0.32 0.07 0.86 0.43 0.29
0.3 Right -0.02 0.96 0.53 0.31 0.05 0.99 0.80 0.29 -0.01 0.93 0.49 0.30 -0.10 0.84 0.60 0.32 0.03 0.91 0.43 0.29
0.3 Tail 0.02 0.95 0.50 0.30 -0.13 0.91 0.58 0.33 -0.02 0.94 0.49 0.30 0.03 0.95 0.60 0.29 -0.02 0.90 0.44 0.31
0.5 Left 0.03 0.99 0.55 0.49 -0.19 0.79 0.53 0.54 0.00 0.95 0.53 0.50 0.13 0.93 0.67 0.47 -0.09 0.79 0.46 0.52
0.5 Mid 0.03 0.93 0.58 0.49 0.01 0.94 0.61 0.50 0.00 0.89 0.54 0.50 0.01 0.95 0.65 0.50 0.02 0.82 0.46 0.50
0.5 Right -0.02 0.95 0.59 0.50 0.13 0.96 0.95 0.46 0.00 0.95 0.55 0.50 -0.19 0.85 0.79 0.53 0.04 0.89 0.45 0.49
0.5 Tail -0.01 0.95 0.52 0.50 0.01 0.90 0.58 0.50 0.00 0.97 0.52 0.50 -0.03 0.94 0.58 0.50 -0.01 0.94 0.46 0.50

Y2

0.3 Left 0.00 0.95 0.35 0.30 -0.20 0.34 0.34 0.38 -0.01 0.91 0.34 0.30 0.10 0.90 0.44 0.26 -0.02 0.90 0.29 0.31
0.3 Mid -0.03 0.96 0.36 0.31 -0.04 0.97 0.40 0.32 0.00 0.97 0.34 0.30 -0.01 0.95 0.43 0.32 0.04 0.86 0.28 0.29
0.3 Right -0.02 0.94 0.37 0.31 -0.01 0.96 0.68 0.29 0.00 0.91 0.36 0.30 -0.06 0.91 0.51 0.32 0.01 0.84 0.27 0.29
0.3 Tail 0.00 0.96 0.33 0.30 -0.07 0.91 0.39 0.33 -0.02 0.92 0.33 0.30 0.02 0.95 0.44 0.29 -0.01 0.90 0.28 0.31
0.5 Left 0.02 0.98 0.33 0.49 -0.10 0.83 0.32 0.54 0.00 0.98 0.33 0.50 0.06 0.93 0.42 0.47 -0.04 0.80 0.29 0.52
0.5 Mid 0.01 0.97 0.36 0.49 0.00 0.91 0.38 0.50 0.00 0.90 0.34 0.50 0.02 0.92 0.41 0.50 0.02 0.88 0.29 0.50
0.5 Right -0.01 0.98 0.40 0.50 0.05 1.00 0.84 0.46 0.00 0.96 0.38 0.50 -0.13 0.76 0.53 0.53 0.01 0.87 0.27 0.49
0.5 Tail -0.01 0.94 0.35 0.50 0.00 0.99 0.41 0.50 0.00 0.94 0.34 0.50 -0.02 0.95 0.41 0.50 0.00 0.94 0.28 0.50

Y3

0.3 Left 0.00 0.94 0.18 0.30 -0.06 0.69 0.17 0.38 0.00 0.94 0.17 0.30 0.02 1.00 0.11 0.26 -0.01 0.96 0.15 0.31
0.3 Mid -0.01 0.96 0.20 0.31 -0.01 0.99 0.25 0.32 0.00 0.97 0.18 0.30 0.02 0.99 0.16 0.32 0.01 0.91 0.15 0.29
0.3 Right -0.02 0.85 0.20 0.31 -0.01 1.00 0.55 0.29 0.00 0.96 0.22 0.30 0.03 0.99 0.31 0.32 -0.02 0.76 0.13 0.29
0.3 Tail -0.01 0.94 0.18 0.30 -0.02 0.99 0.22 0.33 -0.01 0.86 0.18 0.30 0.03 0.99 0.20 0.29 -0.01 0.85 0.14 0.31
0.5 Left 0.00 0.98 0.16 0.49 -0.03 0.82 0.14 0.54 0.00 0.96 0.15 0.50 0.01 0.96 0.07 0.47 -0.01 0.88 0.13 0.52
0.5 Mid 0.01 0.93 0.18 0.49 0.00 0.97 0.21 0.50 0.00 0.94 0.16 0.50 0.02 0.97 0.13 0.50 0.01 0.87 0.14 0.50
0.5 Right -0.01 0.88 0.20 0.50 0.00 1.00 0.78 0.46 0.00 0.86 0.19 0.50 0.02 0.97 0.25 0.53 -0.02 0.74 0.11 0.49
0.5 Tail -0.01 0.91 0.17 0.50 0.01 1.00 0.27 0.50 0.00 0.92 0.17 0.50 0.02 0.99 0.21 0.50 -0.01 0.88 0.13 0.50
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size increases, but there is no clear relation with the size of the point mass and the
amount of missingness.

2.4.3 Bias of the median

Estimating the median for Y1 through Y5 from imputed data can lead to large biases,
especially when the population has been randomly assigned 49% of zeros and the im-
puted data returns 51% of zeros. Biases of the median are therefore mostly influenced
by the size of the point mass, with biases being much lower for data with 30% zeros.
Besides, when skewness increases in the simulation data, point estimates move closer
to zero, resulting in biases being very near to zero for Y4 and Y5 for all methods (see
Figure 2.3).

In all other cases, PMM and the two-part model are less biased than mi, irmi
and the BGLoM. Further, the spread in the biases is much lower for PMM than for
irmi, mi and the BGLoM, but is similar between PMM and the two-part model.
The amount of missingness does not influence the extent of the bias, neither does
the missingness mechanism, nor does the sample size. The non-correlating covariate
results in slightly smaller median biases for all methods.

Table 2.2. Univariate simulation results for X4 over 100 simulations. The table depicts
bias of the mean, coverage rate for the mean, CI width and the estimated percentage of
zeros obtained using different imputation methods and different missingness mechanisms for
semicontinuous variables Y1 through Y3. All cases represent a sample size of n=500 and 50%
MAR missingness.

2-Part BGLoM PMM MI IRMI
pm mar bias cov ciw zero bias cov ciw zero bias cov ciw zero bias cov ciw zero bias cov ciw zero

Y1

0.3 Left 0.02 0.98 0.81 0.30 -0.51 0.59 1.15 0.40 0.00 0.97 1.38 0.30 -0.01 0.94 0.88 0.31 0.69 0.00 0.36 0.15
0.3 Mid 0.00 0.96 0.69 0.30 -0.48 0.63 1.07 0.40 0.01 0.91 1.21 0.30 0.00 0.97 0.81 0.30 0.70 0.00 0.36 0.16
0.3 Right -0.01 0.92 0.76 0.31 -0.60 0.39 1.11 0.42 0.03 0.88 1.47 0.30 0.04 0.98 0.93 0.30 0.68 0.00 0.36 0.15
0.3 Tail 0.01 0.94 0.70 0.30 -0.50 0.55 1.03 0.40 0.05 0.93 1.08 0.29 0.01 0.94 0.85 0.30 0.73 0.00 0.36 0.15
0.5 Left 0.01 0.96 0.83 0.50 0.05 1.00 1.08 0.49 -0.05 0.91 1.53 0.51 0.00 0.96 0.99 0.50 -0.20 0.00 0.40 0.53
0.5 Mid -0.01 0.93 0.73 0.50 -0.02 0.96 1.00 0.50 -0.01 0.94 1.54 0.50 0.00 0.90 0.76 0.50 0.15 0.03 0.40 0.47
0.5 Right 0.01 0.91 0.82 0.50 0.01 1.00 1.32 0.49 -0.03 0.89 1.73 0.50 -0.01 0.94 0.97 0.50 -0.03 0.00 0.40 0.50
0.5 Tail 0.01 0.96 0.72 0.50 -0.01 1.00 1.09 0.50 0.03 0.88 1.22 0.49 0.00 0.96 0.87 0.50 -0.02 0.49 0.43 0.50

Y2

0.3 Left 0.02 0.96 0.52 0.30 -0.30 0.59 0.66 0.40 -0.02 0.89 0.83 0.31 -0.01 0.94 0.60 0.31 0.34 0.00 0.26 0.15
0.3 Mid 0.00 0.94 0.43 0.30 -0.27 0.52 0.63 0.40 -0.02 0.89 0.84 0.30 0.00 0.94 0.54 0.30 0.38 0.00 0.26 0.16
0.3 Right 0.00 0.95 0.50 0.31 -0.34 0.39 0.65 0.42 0.01 0.91 0.99 0.30 0.03 0.95 0.67 0.30 0.34 0.01 0.26 0.15
0.3 Tail 0.00 0.90 0.44 0.30 -0.30 0.57 0.63 0.40 0.03 0.93 0.80 0.29 0.01 0.98 0.55 0.30 0.39 0.00 0.27 0.15
0.5 Left 0.00 0.98 0.52 0.50 0.03 1.00 0.71 0.49 -0.01 0.89 0.90 0.50 0.00 0.96 0.59 0.50 -0.13 0.00 0.25 0.53
0.5 Mid -0.01 0.92 0.45 0.50 -0.02 0.92 0.59 0.50 0.01 0.91 1.04 0.50 0.00 0.94 0.56 0.50 0.07 0.03 0.26 0.47
0.5 Right 0.01 0.93 0.52 0.50 -0.01 0.98 0.80 0.49 -0.02 0.92 0.97 0.50 0.01 0.97 0.62 0.50 -0.03 0.00 0.26 0.50
0.5 Tail 0.00 0.95 0.44 0.50 -0.03 1.00 0.61 0.50 0.02 0.91 0.72 0.49 0.02 0.97 0.57 0.50 -0.01 0.50 0.27 0.50

Y3

0.3 Left 0.01 0.95 0.25 0.30 -0.10 0.60 0.29 0.40 0.00 0.91 0.42 0.30 0.02 0.94 0.34 0.31 0.09 0.38 0.15 0.15
0.3 Mid 0.00 0.93 0.21 0.30 -0.09 0.66 0.26 0.40 -0.02 0.92 0.37 0.31 0.01 0.95 0.31 0.30 0.11 0.24 0.15 0.16
0.3 Right 0.00 0.95 0.25 0.31 -0.12 0.55 0.27 0.42 0.01 0.93 0.39 0.29 0.03 0.93 0.36 0.30 0.09 0.36 0.15 0.15
0.3 Tail 0.00 0.97 0.22 0.30 -0.11 0.56 0.27 0.40 0.01 0.92 0.40 0.30 0.02 0.91 0.28 0.30 0.12 0.20 0.15 0.15
0.5 Left 0.00 0.94 0.23 0.50 0.02 1.00 0.25 0.49 -0.02 0.90 0.37 0.50 0.01 0.95 0.31 0.50 -0.06 0.02 0.12 0.53
0.5 Mid 0.00 0.90 0.19 0.50 -0.01 0.92 0.29 0.50 -0.01 0.93 0.39 0.50 0.01 0.93 0.28 0.50 0.01 0.06 0.12 0.47
0.5 Right 0.01 0.93 0.23 0.50 0.00 0.98 0.45 0.49 -0.01 0.97 0.46 0.50 0.02 0.96 0.38 0.50 -0.02 0.00 0.12 0.50
0.5 Tail 0.00 0.95 0.21 0.50 -0.02 0.99 0.27 0.50 0.00 0.88 0.29 0.49 0.03 0.96 0.30 0.50 -0.01 0.46 0.13 0.50
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Fig. 2.2. Bias of the correlation with the covariate X1 for different imputation methods
over 100 simulations.

2.4.4 Coverage rates and confidence interval widths

PMM and the two-part model have very consistent coverages, whereas irmi and
BGLoM coverages tend to vary to a great extent. mi shows a pattern opposite to
that of PMM and the two-part model. With MI, increasingly skewed variables show
increasingly higher coverages. The same holds for the BGLoM, but to a much lesser
extent. The BGLoM and mi, occasionally, even display a 100% coverage over 100
simulations (see Figure 2.4). However, we can see in Figure 2.5 that mi and the
BGLoM also have much wider confidence intervals. This only holds for covariates
that have predictive power.

When there is no relation with the covariate (e.g., as in X4), the two-part model
shows the smallest confidence interval widths with consistent coverages. BGLoM and
mi confidence interval widths are also smaller than the confidence interval widths for
PMM, although this difference disappears as variables become more skewed. More,
PMM coverages for data with a 30% point mass are much higher than BGLoM cov-
erages in the case of low-correlating predictors.

The irmi algorithm shows a severe problem: confidence interval widths are small,
but coverage rates are either 0 or very small. This only happens in the case of a single



24 2 Imputing Semicontinuous Variables
m

ed
ia

n 
bi

as

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

Y1 Y2 Y3 Y4 Y5

●●●●●●●●●●●
●●●●●●●●●●●●● ●●●●●●●●●

●●●●●●●●● ●●●●●● ● ●●●●●● ●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●● ●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●

2−Part

●
●

●
●

●●
●
●●●

●●
●●
●

●
●●

●
●

● ●
●

●●●

●●●●●
● ●●

●●
●●●
●●●
●●

●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

BGLOM

Y1 Y2 Y3 Y4 Y5

●●●●●●●●●●
●●
●●●
●●●●
●●●●● ● ●●●●●●●●●●●

●●●
●●●

●
●●●●● ●●●●●●●●●●●●●●●●●●

●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●

IRMI

●●●
●●●
●●●●●●●●●

●
●●

● ●●●●● ●●●
●●●

●● ●
●●●●●●

●
●●

●●●●●● ●●●●●●●●●●●●●●●●●●
●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●

MI

Y1 Y2 Y3 Y4 Y5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

●●●●●●●●●●●●●
●●
●
●●●●●●●● ● ●●●●●●●●●●●●●●

●
●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●

PMM

30% zeros
50% zeros

●

Fig. 2.3. Bias of the median for different sizes of the point mass over 100 simulations given
covariate X1.

non-correlating covariate. As soon as there is some predictive power, results improve,
although the coverage rates are never on par with PMM or mi. The reason for this
phenomenon is the logistic step in the algorithm either appoints the missing data as
continuous or as part of the point mass, resulting in 75% or 25% zeros (in the case of a
50% point mass at zero with 50% missingness. The average of all imputed means over
100 simulations may be close to the population mean, but the confidence intervals of
those respective means do not contain the population mean. PMM and the two-part
model show lower coverages for missingness mechanisms that involve the right tail of
the data, but only for Y4 and Y5, where skewness moves to the extreme. irmi also
displays this trend, but to a much greater extent. The BGLoM, on the other hand,
shows unacceptable coverages for left-tailed missingness, but this trend weakens when
skewness moves to the extreme. For right-tailed missingness, the BGLoM and mi show
larger confidence interval widths, whereas the confidence interval widths for PMM and
for the two-part model are not clearly influenced by the location of the missingness.
Please note that for PMM, irmi and the two-part model it can be clearly seen that
for each variable there are three clusters of points. These clusters correspond to the
three sample sizes, where the smaller sample sizes result in larger confidence interval
widths.
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Fig. 2.4. Coverage rates for different imputation methods over 100 simulations using co-
variate X1.

In general, when there is at least some predictive power, PMM coverage rates and
confidence interval widths outperform those of irmi, mi and the BGLoM. Further,
two-part and PMM coverage rates and confidence intervals are very similar, with
PMM having less variation between the different MAR mechanisms.

Lower percentages of missingness result in (slightly) higher coverage rates, as do
larger sample sizes.

2.4.5 Point mass

Table 2.1 and Table 2.2 also show the percentage of estimated amount of zeros (point
mass), for the simulated conditions. The performance of PMM and the two-part model
does not rely on the size of the point mass. Both algorithms estimate the size of the
point mass correctly, with very small deviations, regardless what the simulation con-
ditions are. See Figure 2.6 for a graphical representation of the biases of the estimated
point mass. The BGLoM, on the other hand, is not that insensitive against the size
of the point mass, as we have already seen in previous paragraphs. For the BGLoM,
the estimation of the amount of zeros heavily depends on the size of the point mass
in the original data and the missingness mechanism.
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Fig. 2.5. Confidence interval widths for different imputation methods over 100 simulations
using covariate X1.

The point mass estimated by mi is acceptable in the case of a high-correlating
covariate, although PMM, irmi and the two-part model are more accurate. In the
case of a non-correlating covariate, the amount of zeros estimated by mi is comparable
to PMM and the two-part model.

As we have mentioned in Section 2.4.4, in the case of a single non-correlating
covariate, irmi performance could be improved. For the 50% point mass, the average
amount of zeros is very close to the population point mass; however, the individual
point masses are either 25% or 75%. For the 30% point mass this biased estimation
of the zeros becomes more apparent. Table 2.2 shows this underestimation of the 30%
point mass by the irmi algorithm.

The estimation of the zeros by irmi also differs from the other methods with a
two-stage approach. The amount of zeros and the location of the zeros is the same for
each of the m multiply imputed datasets, meaning that there is less between imputa-
tion variance than multiple imputation theory dictates. This can be easily solved by
drawing β∗ for each of the m multiple imputation streams from a multivariate normal
distribution centered at β̂ with covariance matrix V̂ (β̂), conform the algorithm in
Section 4.2.2.
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Fig. 2.6. Bias of the estimated size of the point mass for different imputation methods over
100 simulations using covariate X1.

The amount of skewness does not influence the bias of the point mass estimate.
Please note that point masses for mi, irmi, the two-part model and the BGLoM are
equal for matching simulation conditions on different variables. This is due to the
sequential nature of these methods, where the imputation of zeros is treated fixed.

2.4.6 Distributional shapes

PMM preserves the distributional shapes of the variables, even for the most extremely
skewed semicontinuous variables, although some information is lost in the right tail of
the distributions due to sampling. mi imputes a log-transformation of the continuous
part of a semicontinuous variable, which clearly shows from the plots. Non-negative
data are imputed and the larger part of the imputations follows the original data
distribution. However, medians are underestimated and extreme values are imputed
on the right-tail side, because the back transformation of the log-transformed data
introduces extreme imputed values.

irmi imputations produce imputations that are similar to the original data dis-
tribution, but only for Y1 and Y2. As variables become more skewed, distributions of
completed data become very similar to those of the two-part model. For the BGLOM,
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Fig. 2.7. Right-tailed MAR missingness: Boxplots of the original data and imputed data
for 5 imputation methods for 50% missing data. Imputations are based on covariate X1.

two-part imputation and irmi, it holds that when skewness increases, these model-
based methods tend to represent a normal curve again (see Figure 2.7).

2.4.7 Plausibility of the imputations

The original data are non-negative, but the two-part model, irmi and the BGLoM
will also impute negative values. In contrast, PMM and mi will impute only positive
data, thus closer resembling the original distribution. However, mi imputes implausible
values in the right tail, moving outside the range of population values. The hot-deck
nature of PMM prevents imputations from moving outside the range of observed
values, thus preserving the data distribution in this respect. This is a particular useful
feature if the original data distributions and relations are to be preserved for further
analysis.

2.5 Multivariate simulation

In order to be able to compare the performance of the imputation methods under
multivariate missingness, we create a population from which we sample. Just like
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the univariate situation, the population has size N = 50.000, but we fix the point
mass to a 50% point mass at zero. We used simple random samples of size 1000. We
consider multivariate simulations under a normal distribution, simulations for skewed
distributions, and simulations for skewed distributions with outliers.

2.5.1 Generating semicontinuous population data

We aim to create a population with two semicontinuous variables Y1 and Y2 and a
covariate X where all three variables are correlated. To this end, we start by creating
two normally distributed variables Q1 ∼ N(5, 1) and Q2 ∼ N(5, 1) to which we assign
a point mass at zero by drawing from a binomial distribution with a 50% chance for
any value in Q1 or Q2 to take on the point mass. Please note that the results are again
two semicontinuous variables wherein the continuous part is normally distributed. For
the normal multivariate simulation, we set

T1 = Q1

T2 = Q2,

and for the multivariate simulation with skewed variables and with outliers, we use
the following transformations:

T1 = Q4
1/max{Q3

1}
T2 = Q4

2/max{Q3
2},

and we create a covariate W ∼ N(5, 1) independent of the other variables. These
three variables can be combined in a data matrix D = [T1T2W ]. By construction, the
three variables T1, T2 and W are uncorrelated. To introduce correlation, we specify
the following target correlation matrix:

RY X =


Y1 Y2 X
1 .5 .5
.5 1 .5
.5 .5 1

 .
Now we find a matrix U such that UTU = RY X and we transform T1, T2 and W

to the final correlated variables by transforming the data matrix D to the final data
matrix Dc by Dc = [Y1Y2W ] = DU . Any ‘transformed’ zeros in Y2 are set to zero.
The following cross table shows the partitioning of the data in four parts. Within

Y2 = 0 Y2 6= 0

Y1 = 0 A (0.250) C (0.252)
Y1 6= 0 B (0.249) D (0.249)

brackets are cross-tabulated proportions of the point mass and continuous parts of
both variables as observed in the population.
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Table 2.3. Normal simulations: Biases and coverage rates for the mean of the multivariate
normal simulation. All biases depict the average simulation value subtracted by the popula-
tion value. Please note that the bias in A, B, C and D are observed proportions minus true
proportions.

A B C D Ȳ1 covȲ1 Ȳ2 covȲ2 ρY1,Y2

CCA

mcar 0.001 0.000 -0.001 -0.001 -0.003 0.963 -0.008 0.945 -0.002
left -0.190 0.041 -0.082 0.231 1.486 0.000 1.312 0.000 -0.076
right 0.230 -0.082 0.037 -0.185 -1.406 0.000 -1.160 0.000 -0.182
tail -0.075 0.068 0.077 -0.070 -0.086 0.894 -0.178 0.789 -0.312
mid 0.073 -0.071 -0.077 0.075 0.114 0.931 0.234 0.815 0.261

PMM

mcar 0.023 -0.023 -0.025 0.026 0.004 0.937 0.014 0.947 -0.006
left 0.040 -0.019 -0.041 0.021 0.003 0.960 -0.016 0.957 0.027
right 0.011 -0.028 -0.008 0.026 -0.024 0.953 -0.061 0.905 -0.062
tail 0.019 -0.020 -0.019 0.022 -0.002 0.952 -0.055 0.922 -0.029
mid 0.034 -0.030 -0.038 0.034 0.009 0.940 0.038 0.946 0.030

2-Part

mcar 0.030 -0.028 -0.029 0.028 -0.015 0.965 0.013 0.957 0.066
left 0.030 -0.028 -0.029 0.028 -0.012 0.947 0.013 0.958 0.071
right 0.028 -0.028 -0.027 0.029 -0.014 0.948 0.017 0.952 0.057
tail 0.018 -0.016 -0.017 0.016 -0.016 0.940 -0.006 0.955 0.028
mid 0.044 -0.039 -0.044 0.042 -0.006 0.944 0.025 0.946 0.106

MI

mcar 0.059 -0.055 -0.059 0.056 -0.009 0.950 -0.028 0.936 0.143
left 0.041 -0.041 -0.067 0.069 0.128 0.818 0.055 0.937 0.131
right 0.064 -0.057 -0.041 0.035 -0.173 0.725 -0.210 0.742 0.077
tail 0.040 -0.036 -0.037 0.034 -0.049 0.920 -0.119 0.863 0.058
mid 0.073 -0.065 -0.075 0.069 0.016 0.947 0.013 0.949 0.189

IRMI

mcar -0.002 0.004 0.001 -0.002 0.016 0.838 0.020 0.755 -0.029
left 0.021 0.008 -0.017 -0.011 -0.005 0.788 -0.113 0.624 -0.008
right -0.011 0.015 -0.006 0.004 0.084 0.704 0.002 0.489 -0.032
tail 0.016 -0.009 -0.016 0.011 0.010 0.898 0.017 0.764 0.026
mid -0.017 0.018 0.013 -0.013 0.028 0.734 0.003 0.632 -0.071

BGLoM

mcar 0.024 -0.009 -0.020 0.006 -0.033 1.000 -0.104 1.000 -0.023
left -0.017 -0.008 -0.017 0.043 0.179 1.000 0.115 1.000 -0.001
right∗ -0.004 0.009 -0.002 -0.002 0.005 1.000 -0.017 1.000 -0.030
tail 0.004 0.010 0.008 -0.020 -0.133 1.000 -0.152 0.930 -0.101
mid 0.037 -0.035 -0.037 0.036 -0.006 0.941 0.014 1.000 0.056

∗ BGLoM right-tailed missingness was simulated with 25% missingness because of
algorithmic problems with large amount of right-tailed missingness for normally distributed

continuous parts

We create multivariate missingness following the procedure as described in Section
2.3.3 with difference that missingness in each Y is not imposed for all Y simultaneously
but depends on the other variables in the data.

For the multivariate simulation with outliers, the preceding procedure is used to
create an additional 500 values with Q1 ∼ N(7, 1) and Q2 ∼ N(7, 1), leading to an
outlier percentage of approximately 1% in each drawn sample.
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2.6 Multivariate results

2.6.1 Multivariate normal

The results of the multivariate normal simulations can be found in Table 2.3. All
investigated methods retrieve the correct proportions for cells A, B, C and D, with
the exception of complete case analysis (CCA). mi proportions seem somewhat more
biased than proportions for other methods.

The same results can be found for the correlation between the two semicontinuous
variables. All imputation approaches retrieve this correlation with low bias, but mi

seems to struggle with missing completely at random (MCAR) already. This is due
to mi log-transforming all incomplete semicontinuous data before imputation, even
when the continuous parts follow a normal distribution.

PMM and the two-step method performed well as biases of the means of Y1 and Y2
are low, their coverage rates are acceptable and plausible and the correlation between
Y1 and Y2 is accurately retrieved. The correlation bias for the two-step method is
rather large for missingness mechanisms that involve the middle of the data.

irmi performance is good, for all estimates except the coverage of the mean. This
indicates that irmi does not include enough between variation in the imputations
when used as a multiple imputation approach.

The BGLoM performs well for all measures, except for the correlation between Y1
and Y2 for tailed missingness. Also, biases for Y1 and Y2 are quite large in situations
where the missingness mechanism involves the left tail. Maybe coverage of the mean
of Y1 and Y2 is a bit too well, as coverage rates tend to be 1. Comparing these results
with those for the univariate case shows that the BGLoM clearly benefits from the
multivariate nature of the data.

2.6.2 Multivariate skewed

It is known that some of the tested methods rely on symmetry. As a remedy, ap-
propriate transformations could be used to transform skewed data accordingly. How-
ever, we find the skewed data case itself still of interest. As seen in the univariate
simulations, back-transforming data may lead to imputing extreme values. Also, a
log-transformation may not always be the most appropriate transformation for the
whole data, making transforming the data a potentially tedious job, thereby delaying
the imputation stage. Performance assessment of a method for imputing skewed semi-
continuous data that does not necessarily require a transformation, such as PMM, is
therefor still useful. The results of the multivariate simulation with skewed target
variables can be found in Table 2.4.

All investigated methods retrieve the correct proportions for cells A, B, C and D,
with the exception of irmi. Applying a log-transformation to the incomplete data
before imputing with irmi, led to a minor decrease in performance. Because of this,
we decided to post the results for irmi without using a transformation.
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Table 2.4. Skewed simulations: Biases and coverage rates for the mean of the multivariate
skewed simulation. All biases depict the average simulation value subtracted by the popula-
tion value. Please note that the bias in A, B, C and D are observed proportions minus true
proportions.

A B C D Ȳ1 covȲ1 Ȳ2 covȲ2 ρY1,Y2

CCA

mcar 0.001 0.000 -0.001 -0.001 -0.001 0.957 -0.002 0.950 -0.006
left -0.075 0.018 -0.020 0.077 0.210 0.008 0.182 0.062 -0.004
right 0.073 -0.019 0.014 -0.068 -0.169 0.002 -0.152 0.018 -0.062
tail 0.000 0.002 0.008 -0.010 -0.049 0.761 -0.033 0.865 -0.061
mid 0.001 -0.005 -0.012 0.016 0.071 0.715 0.053 0.876 0.059

PMM

mcar 0.013 -0.013 -0.016 0.017 0.001 0.955 0.003 0.938 0.027
left 0.009 -0.010 -0.011 0.014 0.003 0.941 0.004 0.949 -0.006
right 0.020 -0.015 -0.017 0.014 -0.016 0.911 -0.011 0.923 0.037
tail 0.014 -0.012 -0.015 0.015 -0.006 0.928 -0.004 0.933 0.024
mid 0.014 -0.014 -0.016 0.017 0.005 0.944 0.005 0.947 0.020

2-Part

mcar 0.011 -0.009 -0.011 0.010 -0.003 0.955 -0.001 0.948 -0.014
left 0.012 -0.007 -0.010 0.006 -0.014 0.939 -0.012 0.949 -0.012
right 0.013 -0.009 -0.011 0.008 -0.020 0.891 -0.015 0.916 -0.032
tail 0.014 -0.010 -0.009 0.007 -0.020 0.894 -0.012 0.925 -0.021
mid 0.007 -0.007 -0.012 0.013 0.014 0.947 0.011 0.949 -0.021

MI

mcar 0.007 -0.005 -0.008 0.007 0.012 0.954 0.015 0.936 -0.097
left 0.004 -0.006 -0.009 0.012 0.027 0.925 0.031 0.911 -0.072
right 0.017 -0.006 -0.003 -0.007 -0.038 0.827 -0.027 0.904 -0.131
tail 0.012 -0.005 -0.005 -0.001 -0.017 0.912 -0.008 0.954 -0.119
mid 0.002 -0.004 -0.011 0.013 0.034 0.917 0.031 0.913 -0.083

IRMI

mcar 0.148 -0.088 -0.115 0.056 0.016 0.591 -0.008 0.504 0.304
left 0.177 -0.052 -0.067 -0.057 -0.073 0.112 -0.108 0.018 0.145
right 0.054 -0.046 -0.109 0.104 0.042 0.278 0.002 0.200 0.225
tail 0.136 -0.091 -0.108 0.065 0.001 0.708 -0.007 0.571 0.304
mid 0.115 -0.046 -0.096 0.028 0.023 0.333 -0.034 0.294 0.213

BGLoM

mcar 0.016 -0.003 -0.010 -0.001 -0.014 1.000 -0.021 1.000 -0.185
left 0.008 -0.006 -0.009 0.009 -0.012 1.000 -0.009 1.000 -0.174
right 0.004 0.011 0.017 -0.031 -0.074 0.960 -0.052 1.000 -0.204
tail 0.003 0.007 0.004 -0.013 -0.050 1.000 -0.038 1.000 -0.201
mid 0.014 -0.006 -0.005 -0.002 -0.004 1.000 -0.004 1.000 -0.176

PMM performed well, as biases of the means of Y1 and Y2 are low, their coverage
rates are acceptable and plausible and the correlation between Y1 and Y2 is accurately
retrieved. The two-part model and mi also perform quite well, but coverages are much
lower for missingness mechanisms that involve the right tail. Also, mi yields large
correlation biases when the missingness involves the right tail.

irmi performance is weak, for all estimates except the bias of the mean. This
underperformance of irmi is mainly due to the logistic step assigning all missing
values to either the point mass or the continuous distribution (c.f. Sections 2.4.4 and
2.4.5).
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The BGLoM performs well for all measures, except for the correlation between Y1
and Y2. Also, biases for Y1 and Y2 are quite large in situations where the missingness
mechanism involves the right tail. Maybe coverage of the mean of Y1 and Y2 is a bit
too well, as coverage rates tend to be 1. Again, it is clear that the BGLoM benefits
from the multivariate nature of the data.

Complete case analysis, as expected, shows good results for MCAR, but yields bias
in the cross tabulated proportions, low coverages and large mean biases, especially
when the left or right tails are involved.

2.6.3 Multivariate skewed with outliers

For the multivariate simulation with outliers, we assessed method performance by
comparing the imputed data with the population data. The imputed data depend on
the outliers, whereas the population data are considered before the outliers are added.

Log-transforming the data before imputation resulted in a minor improvement for
PMM, and the two-part model, but yielded worse results for irmi. For irmi using
robust regression without log-transformation yielded the best results. Given these
increases in performance, we present log-transformed results for PMM and the two-
part model and ‘robust’ results for irmi. Please note that mi always log-transforms
semicontinuous data. The results of the multivariate simulation with skewed target
variables with outliers can be found in Table 2.5.

It becomes apparent that irmi facilitates robust estimation as mean values are
very accurately estimated for all missingness mechanisms, except tailed missingness.
The two-part model, mi and PMM all show larger mean biases, leading to severely
lowered coverage rates. We must note that simulation conditions for irmi in the case
of left-tailed, right-tailed and mid MAR missingness are different from the simulation
conditions of the other methods due to algorithmic difficulties with packages that irmi
depends on. As a solution, we present irmi results for these missingness mechanisms
with only 25% missingness. Mean biases of the other methods are very similar to
those of irmi when 25% missingness is imposed.

Curiously, although irmi does often yield very accurate imputed means, the cov-
erage rates are always below acceptable levels, indicating that irmi does not add
enough between variation when considered as a multiple imputation approach.

All investigated methods retrieve the correct proportions for cells A, B, C and D,
except for irmi. Especially in the case of left and tailed missingness the amount of
zeros is wrongly estimated. In the case where the missingness involves the right tail,
biases are generally low and coverage rates are acceptable for all methods, except for
irmi. The performance of irmi is rather weak when the right tail is involved.

It is clear that the BGLoM benefits from the multivariate nature of the data. The
BGLoM yields acceptable results, although mean biases are sometimes a bit large.
Also, the BGLoM yields biased estimates for the correlation when the missingness
involves the right tail. Again, BGLoM coverage rates are too large, indicating too
much variation between the imputed datasets.
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Table 2.5. Outlier simulation: Biases and coverage rates for the mean of the multivariate
skewed simulation with outliers. All biases depict the average simulation value (with outliers)
subtracted by the population value (without outliers). Please note that the bias in A, B, C
and D are observed proportions minus true proportions.

A B C D Ȳ1 covȲ1 Ȳ2 covȲ2 ρY1,Y2

CCA

mcar -0.001 -0.004 -0.003 0.008 0.065 0.956 0.090 0.950 0.357
left -0.077 0.008 -0.028 0.098 0.424 0.008 0.482 0.062 0.525
right 0.068 -0.018 0.013 -0.063 -0.157 0.002 -0.140 0.018 -0.055
tail -0.004 0.005 0.007 -0.007 -0.037 0.761 -0.026 0.865 -0.059
mid -0.004 -0.014 -0.020 0.039 0.304 0.716 0.377 0.876 0.579

PMM (log)

mcar 0.001 -0.008 -0.007 0.014 0.064 0.756 0.087 0.582 0.336
left -0.005 -0.008 -0.005 0.017 0.070 0.608 0.101 0.381 0.373
right 0.012 -0.012 0.002 -0.002 -0.009 0.929 0.007 0.947 -0.079
tail 0.002 -0.005 -0.006 0.009 0.013 0.963 0.020 0.928 -0.032
mid -0.000 -0.007 -0.008 0.015 0.071 0.678 0.093 0.475 0.376

2-Part (log)

mcar 0.005 -0.007 -0.010 0.014 0.087 0.773 0.105 0.664 0.231
left 0.010 -0.006 -0.013 0.011 0.071 0.624 0.088 0.582 0.338
right 0.005 -0.006 -0.008 0.011 0.064 0.948 0.061 0.925 0.068
tail 0.006 -0.006 -0.008 0.010 0.072 0.940 0.066 0.917 0.116
mid 0.003 -0.007 -0.012 0.018 0.085 0.571 0.115 0.411 0.314

MI

mcar 0.005 -0.010 -0.010 0.015 0.073 0.736 0.090 0.684 0.086
left 0.010 -0.012 -0.016 0.019 0.091 0.575 0.116 0.485 0.287
right 0.013 -0.009 -0.003 -0.001 -0.023 0.887 -0.014 0.923 -0.118
tail 0.009 -0.009 -0.006 0.006 -0.001 0.941 0.007 0.950 -0.096
mid 0.000 -0.011 -0.013 0.024 0.119 0.457 0.153 0.344 0.243

IRMI (robust)

mcar 0.166 -0.099 -0.131 0.064 -0.020 0.530 -0.014 0.514 0.444
left∗ 0.105 -0.029 -0.044 -0.032 0.018 0.887 0.017 0.891 0.420
right∗ -0.013 -0.036 -0.035 0.083 0.004 0.744 0.027 0.357 0.136
tail 0.132 -0.081 -0.101 0.049 -0.124 0.043 -0.146 0.079 -0.119
mid∗ 0.071 -0.051 -0.056 0.036 0.045 0.658 0.062 0.543 0.472

BGLoM

mcar 0.006 0.007 0.013 -0.026 0.056 1.000 0.037 1.000 -0.026
left 0.004 0.004 0.002 -0.010 -0.004 1.000 0.024 1.000 0.007
right 0.020 0.003 0.004 -0.027 -0.083 1.000 -0.043 1.000 -0.201
tail 0.006 -0.000 0.010 -0.017 -0.040 1.000 -0.061 1.000 -0.201
mid 0.016 0.009 0.011 -0.035 0.044 1.000 0.061 0.999 -0.005

∗IRMI left-tailed, right-tailed and mid MAR missingness were simulated with 25%
missingness because of algorithmic problems with large amounts of missingness for

continuous parts with outliers.

The BGLoM delivers the most accurate estimate for the correlation between Y1 and
Y2 when the right tail is not involved. When the right tail is involved, PMM delivers
on average the more accurate estimates for the correlation coefficient, especially for
tailed MAR missingness.

All in all, there is no one single imputation method for semicontinuous data that
is robust against outliers and yields acceptable inference on all investigated estimates
across all simulation conditions.
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Table 2.6. Comparison between true and imputed ITSR for all imputation methods. De-
picted are the total amount of zeros, the amount of values in cells A, B, C and D, the
correlation ρD of values in cell D, the total correlation ρ, mean ITSR after imputation and
the width of the confidence interval.

zero A B C D ρD ρ mean ciw

ITSR 69.0 40.00 29.00 0.00 249.00 0.31 0.46 0.07 -
PMM 69.4 36.00 29.40 4.00 248.60 0.31 0.46 0.07 0.02
2-Part 70.4 32.60 30.40 7.40 247.60 0.37 0.47 0.06 0.04
MI 65.33 27.33 25.33 12.67 252.67 0.29 0.36 0.07 0.02
IRMI 55.0 40.00 15.00 0.00 263.00 0.40 0.50 0.07 0.02
BGLoM 92.2 36.60 52.20 3.40 225.80 -0.02 0.01 0.10 0.67

2.7 Application to real data

Two datasets are used for evaluating PMM imputation on real-world data, one from
social statistics (The Hague Twitter Scene (HTS) data) and one from official statistics
(Dutch Wholesalers Statistics 2008). All investigated variables are either complete or
have been edited already. Missingness is imposed by a MAR missingness mechanism.

2.7.1 HTS data

Twitter data gathered from the HTS is chosen as a real-world dataset from social
sciences (Sargasso.nl, 2012). Based on the HTS data, Sargasso.nl (2012) created a
network indicating the influence of people and their opinions in Dutch politics. The
318 people investigated include politicians, journalists, spin doctors and managers.

One variable that is particularly interesting is the Incrowd Tweet Success Rate
(ITSR), indicating for each respondent the percentage of tweets being retweeted or
replied within the HTS. This variable is related to the Tweet Success Rate (TSR),
being the overall percentage of tweets being replied or retweeted. Both variables are
semicontinuous, as some people are never retweeted or replied, but we choose ITSR for
demonstration because it contains a larger point mass at zero (22%). Approximately
50% left-tailed MAR missingness was imposed in ITSR with TSR as a covariate.

Table 2.6 shows the results for ITSR after imputation for all investigated methods.
PMM estimates the total amount of zeros in the data very accurately. Some values
that were originally zeros are set to continuous but overall performance is very good.
The same holds for the two-part model, but the two-part model distributes more
values into cell C and overestimates the correlation between the continuous parts of
cell D. mi redistributes values across the four cells, A, B, C and D and underestimates
the total amount of zeros. The correlation ρ after imputation is underestimated.

The BGLoM and irmi both underestimate the total amount of zeros, although no
values that were originally zero are set to continuous. Instead, many values that were
originally zero and had a matching continuous value in the covariate TSR are set to
continuous after imputation. As a result, the BGLoM underestimates the correlation
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Table 2.7. Comparison between true and imputed TEMPS for all imputation methods.
Depicted are the total amount of zeros, the correlation between TEMPS and EMPL ρ, mean
TEMPS after imputation and the width of the confidence interval.

zero ρ mean ciw sum

TEMPS 304.00 0.48 5.02 0.00 4172.00
PMM 312.80 0.50 4.94 2.31 4103.80
2-Part 300.60 0.40 5.88 4.18 4881.98
MI 294.67 0.51 5.02 2.11 4170.49
IRMI 120.00 0.45 5.63 2.70 4681.64
BGLoM 514.00 0.49 4.14 2.26 3440.17

coefficients ρD and ρ and irmi overestimates these coefficients. The BGLoM severely
overestimates the mean of ITSR after imputation.

2.7.2 Dutch Wholesaler Statistics 2008

The Dutch Wholesalers data from 2008 is chosen as a typical real-world dataset from
official statistics. The data (N=831 after editing) are collected by Statistics Nether-
lands (CBS) and consists of variables such as the number of employees, turnover and
costs for Dutch wholesalers. We focus on the amount of temporary workers (TEMPS),
as this variable has a large point mass at zero (36.5%) and consists otherwise of data
that can be considered as continuous.

Approximately 50% left-tailed MAR missingness was imposed (cf. Section 2.3.3)
on TEMPS with the total amount of employees (EMPL) as a covariate. Left-tailed
missingness is more realistic for this type of data and would be encountered in real
life, as the larger companies tend to be always observed in official statistics.

Table 2.7 shows the results for the original data and the investigated methods.
PMM performs very well overall and shows low biases in estimating the point mass,
the correlation and the mean of TEMPS. The total amount of temporary workers
(sum) is closely approximated. The two-part model best estimates the size of the
point mass, but the correlation is underestimated, and the mean of TEMPS and the
sum of TEMPS are overestimated.

mi also performs very well, especially in estimating the sum of TEMPS, but has
a bit more bias in estimating the point mass. It shows that the continuous nature
of the covariate is beneficial to mi. irmi underestimates the point mass by a large
amount and shows an overestimation of the mean and sum of TEMPS, but bias in
the correlation is rather low. The BGLoM shows a large overestimation of the point
mass and therefor underestimates the mean and sum of TEMPS, but correlation bias
is lowest of all investigated methods.
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2.8 Conclusions

How does PMM compare to specialized methods like mi, irmi, the BGLoM and the
two-part model for imputing semicontinuous data? All in all, PMM, mi and the two-
part model generally outperform irmi and the BGLoM.

Between PMM, mi and the two-part model, we conclude that PMM performance
is best overall. The performance of PMM is at least as good as the performance
of mi and the two-part model, with PMM often outperforming the other methods.
PMM preserves data distributions and imputes only non-negative values when the
data consist of non-negative values. mi can also impute non-negative values, but the
log-transformation procedure leads to imputing non-negative values that are far out-
side the range of observed values, leaving PMM the only investigated method that
preserves the original data distribution.

In the multivariate simulations, it shows that none of the imputation procedures
are specifically suitable to impute semicontinuous data in the presence of outliers.
Depending on the estimate of interest, it might be beneficial to impute large amounts
of incomplete skewed data with outliers by different approaches as there is no single
imputation approach that yields acceptable inference over all simulation conditions.
Improving on more efficient and robust estimation of predicted means could improve
the performance of PMM for semicontinuous data with outliers, but exploring such
applications are subject to future work.

An important part of semicontinuous data is the size of the point mass and its
relation to auxiliary variables. We can see from both the univariate and multivariate
simulations that PMM accurately estimates the size of the point mass, independent
from the missingness mechanism, and best preserves the correlation in the data when
outliers are not considered. The total amount of zeros and the range and location
of the continuous values are also accurately estimated by PMM as estimations for
the median and mean yield very low bias. Coverage rates for PMM are acceptable
and stable, indicating that standard errors are not too firm or too liberal and that
uncertainty and variability within and between imputations are well executed.

The strength of PMM as an imputation method for semicontinuous data lies in
its hot-deck properties. Imputed values are drawn from the observed data instead of
an assumed model for the distribution. The benefit to this approach is that patterns
and relations that are present in the data will be preserved in the imputed data under
MCAR and MAR mechanisms, since the missingness mechanism in these models is
either random, or based on the observed data. For missing outlying values in very
skewed data, there may be no close donor values and model-based predictions can
sometimes perform better. Finally, PMM as a hot-deck method requires a sufficiently
large donor pool in order to yield acceptable inference.

Our results suggest that PMM can be used by data-analysts and applied re-
searchers as an imputation method for semicontinuous data. However, imputing semi-
continuous data in general, must be done with care. Skewness, the missingness mech-
anism, outliers and the size of the point mass are important factors and may influence
the imputations. However, the performance of PMM is very stable and the method
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was found to yield accurate inferences in the most extreme conditions, even in the
case of no predictive power in the dataset.

Using PMM as an imputation method, instead of the other investigated methods
may be convenient in practice. The two-part model, mi, irmi and the BGLoM are
model-based approaches, with accompanying assumptions and limitations. Although
some of these limitations can be dealt with by using some kind of transformation of the
data, PMM does not rely on these assumptions and does not show the same limitations
as these methods. Given that PMM is already available in statistical software gives
applied researchers the possibility to use PMM as an all-round imputation method
that can be used for other types of data.

There are some limitations to this research. First, we limited our research to contin-
uous covariates. In real datasets, nominal or ordinal data may occur. In practice these
type of variables may be handled by using dummy variables or data transformations.
We see no reason how that could impact the performance. Second, BGLoM coverage
rates often exceed the 95% level. This can be attributed to a too large amount of be-
tween variation between the multiply imputed datasets. As a result estimations may
be correct on an inference level, but increasing between imputation variance yields
too wide confidence intervals, leaving the method to be too conservative. Finally, we
display results for simulations with 50% missingness in each variable, thereby severely
limiting performance in univariate and multivariate data scenarios. In practice less
missingness is often encountered, which will benefit performance of all methods.

To conclude, predictive mean matching is at least as good for imputing semicon-
tinuous data as dedicated methods for such data. PMM is very flexible as a method,
due to its hot-deck characteristics, and is free of distributional assumptions. More-
over, PMM tends to preserve the distributions in the data, so the imputations remain
close to the data. These properties generally appeal to applied researchers.
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Partitioned Predictive Mean Matching as a
Multi-level Imputation Technique

Summary. Large scale assessment data often has a multilevel structure. When dealing with
missing values, such structures need to be taken into account to prevent underestimation
of the intraclass correlation. We evaluate predictive mean matching (PMM) as a multilevel
imputation technique and compare it to other imputation approaches for multi- level data.
We propose partitioned predictive mean matching (PPMM) as an extension to the PMM
algorithm to divide the big data multi-level problem into manageable parts that can be
solved by standard predictive mean matching. We show that PPMM can be a very effective
imputation approach for large multilevel datasets and that both PPMM and PMM yield
plausible inference for continuous, ordered categorical, or even dichotomous multilevel data.
We conclude that both the performance of PMM and PPMM is often comparable to dedicated
methods for multilevel data.

3.1 Introduction

In large scale assessment surveys, missing values for student demographic and socioe-
conomic background data are frequently encountered. Often such data has a multilevel
structure, where respondents are nested within naturally occurring clusters, such as
schools or municipalities. Accounting for missingness in data with a multilevel struc-
ture is a relatively recent development, and much remains unknown.

In the multilevel analysis model, cluster effects are assumed to be random. Simply
ignoring the effects of the cluster during imputation can lead to an underestimation
of the intraclass correlation (ICC) in the completed data. Ideally, model parameters
within the clusters are allowed to randomly vary during imputation. Although such

This chapter is accepted for publication in Psychological Test and Assessment Modeling as
Vink, G., Lazendic, G., & Van Buuren, S. (in press). Partitioned predictive mean matching
as a multi-level imputation technique. Psychological Test and Assessment Modeling
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strategies are available (Zhao and Schafer, 2013), they rely heavily on model assump-
tions.

Some authors have indicated that multilevel data can also be reasonably imputed
when cluster membership is taken into account as a fixed effect (Andridge, 2011;
Graham, 2012). A straightforward procedure to include cluster membership into the
imputation model as a fixed effect is to use dummy coding strategies. Such strategies
should allow for proper estimation of the intraclass correlation, especially when the
ICC gets large (Andridge, 2011; Graham, 2012).

Imputing multilevel data by incorporating a fixed effects approach in the imputa-
tion model can be very convenient in practice. In such situations, a straightforward
extension of current imputation methodology to the situation of multilevel data suf-
fices. For real life data, which does not necessarily follow a specific distribution, such
an extension can be especially flexible when an approach is used that does not pose
strict assumptions on the distribution of the data.

One imputation approach that is particularly proven to work well in a wide range
of situations is predictive mean matching (PMM, Rubin, 1986; Little, 1988). It has
been shown that the performance of imputation procedures involving PMM can be
very good (Van Buuren, 2012; De Waal et al., 2011; White et al., 2011; Su et al.,
2011; Van Buuren and Groothuis-Oudshoorn, 2011; Siddique and Belin, 2007; Yu
et al., 2007), especially when normality assumptions are breached or when semicon-
tinuous data is considered (Van Buuren, 2012; Vink et al., 2014). More specifically,
PMM does not only yield acceptable and plausible estimates, but also manages to
maintain underlying distributions of the data (Van Buuren, 2012; White et al., 2011;
Yu et al., 2007; Heeringa et al., 2002; Vink et al., 2014). Implementation of PMM is
straightforward in multivariate data problems when the fully conditional specification
(FCS, Van Buuren et al., 2006) framework is used. Little is known, however, about
the practical applicability of PMM on multilevel data.

We investigate how suitable PMM is as an imputation approach for multilevel data
when the clustering of the data is modeled as a fixed effect during imputation. We
thereby concentrate on a comparison between PMM, bayesian normal linear imputa-
tion (NORM) and a mixture of suitable, dedicated 2-level imputation methods (MIX)
in a simulation study. We propose partitioned predictive mean matching (PPMM) as
an extension to the predictive mean matching algorithm to facilitate imputation of
multilevel data for big datasets. Finally, we apply PPMM to a large real dataset from
the Australian Curriculum, Assessment and Reporting Authority (ACARA) to obtain
a Bayesian estimate of Social-Educational Advantage on the school level.

3.2 Predictive Mean Matching as a Multilevel Imputation
approach

We define Y = (Yobs, Ymis) as an incomplete variable, where Yobs and Ymis denote the
observed values and the missing values in Y , respectively. We define X = (X1, ..., Xj)
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as a set of j fully observed covariates, with Xobs and Xmis corresponding to the ob-
served and missing parts in Y . Further, n denotes the number of units in Y , nmis and
nobs denote the number of units with missing and observed values of Y , respectively,
and m denotes the number of multiply imputed datasets to be obtained, with m ≥ 2.
Finally, we require the variable that contains the class structure to be included in X
in dummy coded form.

3.2.1 PMM algorithm

Multiply imputing Ymis by means of predictive mean matching can be done by the
following algorithm.

1. Use linear regression of Yobs givenXobs to estimate β̂, σ̂ and ε̂ by means of ordinary
least squares.

2. Draw σ2∗ as σ2∗ = ε̂T ε̂/A, where A is a χ2 variate with nobs−j degrees of freedom.

3. Draw β∗ from a multivariate normal distribution centered at β̂ with covariance
matrix σ2∗(XT

obsXobs)
−1.

4. Calculate Ŷobs = Xobs β̂ and Ŷmis = Xmis β
∗.

5. For each missing value Ŷmis,i where i = 1, . . . , nmis:

a) find ∆ = |Ŷobs,k − Ŷmis,i| for all k, with k = 1, . . . , nobs.
b) Randomly sample one value from (∆(1), . . . ,∆(5)), where ∆(1) through ∆(5)

are the five smallest elements in ∆, respectively, and take the corresponding
Yobs as the imputation.

6. Repeat Steps 1 through 5 m times, each time saving the completed dataset.

In the case of multivariate missingness, FCS can be used to iteratively impute every
missing datum in each variable of interest, based on a set of covariates. We must note
that alternative implementations of PMM do exist (see e.g. (Koller-Meinfelder, 2009;
Morris et al., 2014; Schenker and Taylor, 1996; Siddique and Belin, 2007)).

3.2.2 Selecting donors

When performing PMM on multilevel data, three possible scenarios can be used to
sample a probable donor value. First, if we ignore the cluster structure, any value in
Yobs can in theory be sampled as a donor value, although some values are more likely
than others. Assumed that units within a cluster are more alike than units between
clusters, this scenario will ignore valuable information, potentially leading to biased
results and underestimated cluster effects.

Alternatively, missing values in Y can be imputed by sampling a suitable donor
candidate from within the respective cluster. Although potentially very effective, this
scenario will quickly pose donor selection problems when clusters size becomes too
small or when clusters are completely unobserved.

We prefer a compromise between the first two scenarios. In the algorithm from
3.2.1, the cluster structure is included in the prediction models for Ŷmis and Ŷobs. As
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a result, the likelihood of a sampled donor value coming from the same cluster (or
a similar cluster, for that matter) as the missing value is increased. In this way, the
cluster structure is preserved as far as possible, while still allowing for probable donor
selection in the case of very small or completely unobserved clusters.

3.2.3 Partitioned predictive mean matching (PPMM)

As datasets become increasingly larger, using dummy coding strategies can become
computationally challenging. In the case of many respondents (say 3 million) combined
with a large number of clusters (say 10 thousand), expanding the cluster structure to
dummy variables may currently even be computationally unfeasible. To avoid compu-
tational problems when using predictive mean matching with large multilevel datasets,
we propose the following extension to the predictive mean matching algorithm:

1. Partition the data into P approximately equally sized smaller parts, where each
part p = 1, . . . , P contains only whole clusters.

2. Carry out the PMM algorithm from Section 3.2.1 on each part p.
3. Append the P parts for each multiply imputed dataset.

Without loss of generality, the combined data for the P imputed parts can be analyzed
conform to current imputation methodology. For the estimation process it is critical
that clusters are wholly contained in a single part and are not split among parts. If
the data is ordered based on a set of (observed) covariates, such that the likelihood
of similar clusters being in the same part is increased, selecting a probable donor can
be done on the level of the available donors, without the need for the data as a whole.
For example, demographic information can be used to group similar clusters into the
same parts. Such a procedure would benefit the imputation model, especially when
donor candidates need to be sampled from outside the ‘own’ cluster.

3.2.4 Speeding up donor selection

Both PMM and PPMM draw imputations from observed values by comparing the
distance between each Ŷmis with all Ŷobs. This process can become a very lengthy
procedure for very large datasets (e.g. n > 1, 000, 000). Using a sufficiently large
randomly selected subsample from Ŷobs to sample donors from is computationally
convenient and efficient, especially when the number of cases and the proportion of
missingness are both large. We propose the following extension to the donor selection
step in the PMM algorithm from Section 3.2.1 for large datasets with large amounts
of missingness:

1. Draw a subsample Ŷ Sobs of length l randomly from Ŷobs, with l < nobs.

2. Find for each missing value Ŷmis,i the five smallest donors from ∆ = |Ŷ Sobs,k1 −
Ŷmis,i|, where k1 = 1, . . . , l.

We must note that it is not necessary to choose l < nobs, but doing so may greatly
benefit computation time.
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3.3 Simulation

Predictive mean matching is an imputation method that is relatively easy to imple-
ment with a performance that is often very good. To gain insight in the suitability of
PMM and PPMM as a multiple imputation approach for multilevel data we performed
the following simulation study.

We use the popularity2 dataset from Hox (2010), a simulated dataset for 2,000
pupils in 100 classes. The dataset contains two level one outcome measures that con-
sider pupil popularity; an indication of pupil popularity (popular, µ = 5.08) derived by
a sociometric procedure and pupil popularity as perceived by the teacher (popteach,
µ = 5.06). Both outcome variables are measured on a 10-point scale. The explanatory
variables are pupil gender (sex, µ = 0.51), pupil’s self-measured extraversion (extrav,
µ = 5.22) on a 10-point scale, and the experience of the teacher (texp, µ = 14.26)
measured in years. The popularity data does not consider the school level.

We induce missing completely at random (MCAR) and missing at random (MAR)
missingness in the popularity data based on popularity as perceived by the teacher
(popteach). Missing values are assigned by using a random draw from a binomial
distribution of the same length as Y and of size 1 following the procedure as described
in Vink et al. (2014). In the simulations, 15 %, 25 % and 50 % missingness is induced.

To simulate PPMM we partition the data into 10 parts, where each part contains
roughly 200 pupils and classes are not split across parts. The average self-perceived
pupil popularity differs greatly across classes, which may result in poor performance of
the imputation method when using random partitioning, especially when the amount
of missingness is large. To this end, the data are sorted based on the average pupil
popularity in each class, such that average pupil popularity within parts is more
similar than average pupil popularity between parts.

Data imputations are performed with mice (version 2.21, Van Buuren and Groothuis-
Oudshoorn, 2011) in R (version 3.1.0, R Core Team, 2013), with 5 multiply im-
puted datasets and 10 iterations for the algorithm to converge. PMM and PPMM
(both performed by mice.impute.fastpmm) are compared to a distributional ap-
proach (normal bayesian linear imputation conform mice.impute.norm) and a mix
of dedicated multilevel imputation algorithms (MIX), namely mice.impute.2l.norm

for ‘extrav’, mice.impute.2l.pan (based on PAN by Zhao and Schafer (2013)) for
‘popular’ and mice.impute. 2lonly.mean for ‘texp’. We use logistic regression im-
putation (mice.impute. logreg) to impute ‘gender’ for NORM and MIX, but leave
out the results under MIX as they are equivalent to the results under NORM.

Table 3.1. Overview of imputation methods used per variable in the simulation

LEVEL 1 LEVEL 2
extrav sex popular texp

PMM pmm pmm pmm pmm
NORM norm logreg norm norm

MIX 2l.norm - 2l.pan 2lonly.mean
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Each cluster in the popularity dataset contains at least 16 and at most 26 students,
with the mode being 20 students. There is no need to investigate larger cluster sizes,
as it is known that bias in the ICC decreases as cluster size gets larger (Andridge,
2011).

3.3.1 Evaluation

We evaluate the imputation approaches on the ability to retrieve the following model
components for each variable: the average bias of the group means (fixed effect bias),
the average coverage rate of the 95 % confidence interval of the group means and the
ICC. The ICC is defined as σ2

α/(σ
2
α+σ2

ε ) where σ2
α denotes the between group variance

and σ2
ε denotes the within group variance of the random effects. Conveniently, the

ICC contains the information about the random effects variance components, therefor
we do not evaluate these variances separately.

The above evaluations are carried out on the variable level instead of the model
level for two reasons. First, we would like to preserve data structures. Second, the role
variables take in a model might change during the analysis stage. Outcome variables
in one model may become predictors in another model, and vice versa. Ultimately, it
would be ideal if both models can be analyzed on the same data.

Because we consider the popularity data as the population and induce missingness
in the data directly, we have no sampling variation and the pooling rules proposed in
Vink and Van Buuren (2014) are used.

3.3.2 Results

Intraclass correlation

The popularity data displays strong population intraclass correlations (see Table 3.2).
All imputation methods yield results that are relating close to these population values.
As expected, the bias increases with the amount of missingness.

The experience of the teacher (texp) is particularly interesting when considering
the intraclass correlation. Because the experience is the same for all pupils in a cluster,
the intraclass correlation equals 1. PMM is able to automatically replicate this struc-
ture, yielding the correct inference as if the data were deductively imputed. NORM
does not sample from the observed data, but rather draws from a normal distribution,
resulting in a small deviation from the population value. MIX uses a cluster mean
imputation method, which yields unbiased results when at least one pupil is observed
in each cluster. For larger amounts of missingness, however, it may occur that clusters
are completely unobserved. In such situations, MIX is not able to find an imputation.

The slightly larger bias for the ICC for teacher experience in the case of PPMM
can be explained by the correlation between pupil popularity and teacher experience
(ρ(1998) = .29, p < .01). Sorting the data based on pupil popularity will have an effect
on the distribution of teacher experience over parts. Together with the smaller sample
size, this results in occasional imputations for teacher experience that are different
from the observed values.
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Fixed effects

The fixed effects are very accurately estimated by all imputation approaches, see
Figure 3.1. PMM displays a very stable performance, with very low variation in the
bias across missingness mechanisms. PPMM shows more variation in the case of 50 %
missing data, which can be explained by restrictions put on the available donor pool
due to partitioning. For all methods it holds that bias is very small, even for large
amounts of missingness.

Because teacher experience is a level-2 variable, values are the same for every pupil
in a cluster. For such variables, PMM will yield correct results, even when none of the
cluster’s values are observed. MIX will also yield correct results, but only for clusters
that have at least one observed value.

Coverage rates of the cluster means

Figure 3.2 displays the average over the coverage rates for the cluster means. It can
be seen that performance for all methods is very stable across all variables, with very
good coverage rates under all missingness mechanisms when considering 15 percent

Table 3.2. Bias of the intraclass correlations after imputation as deviations from the pop-
ulation value (truth).

15 % missing 25 % missing 50 % missing
meth mech extrav sex texp pop extrav sex texp pop extrav sex texp pop

TRUTH - 0.262 0.112 1 0.363 0.262 0.112 1 0.363 0.262 0.112 1 0.363

PMM

mcar 0.009 0.002 0 0.004 0.017 0.009 0 0.008 0.047 0.036 0 0.021
left 0.007 0.004 0 0.002 0.014 0.010 0 0.004 0.053 0.048 0 0.017
right 0.011 0.002 0 0.001 0.020 0.008 0 0.006 0.056 0.044 0 0.020
mid 0.009 0.003 0 0.004 0.017 0.010 0 0.008 0.050 0.046 0 0.025
tail 0.009 0.002 0 0.000 0.015 0.006 0 0.003 0.050 0.031 0 0.015

PPMM

mcar 0.007 0.001 -0.001 0.006 0.012 0.004 -0.001 0.011 0.034 0.027 -0.003 0.030
left 0.006 0.005 -0.001 0.005 0.016 0.013 -0.001 0.007 0.048 0.047 -0.002 0.029
right 0.004 -0.009 -0.001 0.006 0.013 -0.012 -0.002 0.009 0.033 0.011 -0.007 0.030
mid 0.007 0.004 -0.001 0.004 0.012 0.011 -0.001 0.008 0.035 0.041 -0.002 0.031
tail 0.005 -0.004 -0.001 0.004 0.010 -0.004 -0.001 0.007 0.034 0.011 -0.003 0.026

NORM

mcar 0.007 -0.009 ≈ 0 0.003 0.012 -0.009 ≈ 0 0.004 0.043 0.013 ≈ 0 0.018
left 0.006 -0.009 ≈ 0 0.001 0.011 -0.004 ≈ 0 0.003 0.042 0.036 ≈ 0 0.015
right 0.011 -0.011 ≈ 0 0.001 0.020 -0.010 ≈ 0 0.005 0.057 0.024 ≈ 0 0.022
mid 0.007 -0.003 ≈ 0 0.003 0.014 -0.001 ≈ 0 0.006 0.042 0.026 ≈ 0 0.018
tail 0.007 -0.016 ≈ 0 -0.000 0.014 -0.017 ≈ 0 0.001 0.048 0.007 ≈ 0 0.011

MIX

mcar -0.001 - 0 -0.000 -0.006 - 0 -0.001 -0.018 - 0 0.003
left -0.006 - 0 -0.002 -0.012 - 0 -0.003 -0.030 - *0 0.001
right -0.006 - 0 -0.000 -0.011 - 0 0.002 -0.019 - *0 0.011
mid -0.001 - 0 -0.000 -0.005 - 0 -0.000 -0.020 - 0 0.005
tail -0.007 - 0 -0.000 -0.012 - 0 0.000 -0.031 - 0 0.003

*Values are calculated based on the imputed clusters only, due to some clusters being
completely unobserved.
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Fig. 3.1. Average bias of the group means. Shown are results for four imputation approaches
and four variables for varying missingness percentages.

missingness. Because of the unbiased group means, PMM is able to perfectly cover the
average teacher experience in the population after imputation, even for large miss-
ingness percentages. When missingness increases to 50 percent, PMM performance is
still good for all variables. However, the dichotomous variable gender may be more
efficiently imputed using logistic regression imputation (as under NORM).

Confidence interval width

Confidence interval widths are generally small when the cluster structure is taken
into account, with PMM yielding slightly smaller intervals than the other imputation
approaches. As expected, the average interval width for teacher experience under
PMM is zero and the average interval width under NORM is close to zero. For MIX,
the average interval width is unbiased, but is calculated over the observed clusters
for large amounts of missingness. As expected, interval widths between PMM and
PPMM are very similar, with the exception of the interval widths for experience of
the teacher.

3.4 Application

We apply PPMM on a dataset collected by ACARA for the purpose of providing
fair and meaningful comparisons of student performance in the National Assessment



3.4 Application 47

Imputation method

A
ve

ra
ge

 c
ov

er
ag

e 
of

 th
e 

gr
ou

p 
m

ea
ns

0.90

0.95

1.00

extrav popular sex texp

●

●

●

MIX
50% Missing

● ●

●

●

NORM
50% Missing

extrav popular sex texp

●
●

●

●

PMM
50% Missing

● ●

●

●

PPMM
50% Missing

●

●

●

MIX
15% Missing

extrav popular sex texp

●

●

●

●

NORM
15% Missing

●
●

●

●

PMM
15% Missing

extrav popular sex texp

0.90

0.95

1.00

● ●

●

●

PPMM
15% Missing

MCAR
LEFT
RIGHT
MID
TAIL

●

Fig. 3.2. Average coverage rate of the 95 percent confidence interval of the group means.
Shown are results for four imputation approaches and four variables for varying missingness
percentages.

Program - Literacy and Numeracy (NAPLAN) between schools serving students from
statistically similar socio-educational backgrounds. The resulting student background
dataset (SBD) contains 2.782.060 Australian students clustered in 9.671 Australian
schools and can be used for obtaining an estimate of the social educational advantage
(SEA) score for Australian schools. An overview of the most important variables in
the dataset is given in Table 3.3.

All variables with missingness are imputed, but here we focus on parent educa-
tion and occupation. The parental variables are ordered categorical variables, with
‘occupation’ and ‘non-school education level’ having a separate category that records
‘not in paid work‘ and ‘no non-school qualification’, respectively (see Table 3.4). The
dual (or semi-categorical) nature of these data can be split in two parts: an ordered
distribution over the categories and a point mass that does not follow the ordering of
the other categories. For continuous or integer data with such a point mass, PMM is
known to be a very effective single-step imputation approach (Vink et al., 2014).

Another reason for focusing on the parent variables is the large amounts of miss-
ingness. The parent variables contain most of the missing values in the data, ranging
from 17 to 32 percent missingness per variable. As a result, a large number of obser-
vations may be missing on the school level and schools are sometimes even completely
unobserved. With such large amounts of missingness, it is important to use an im-
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Fig. 3.3. Average width of the 95 percent confidence interval of the group means. Shown are
results for four imputation approaches and four variables for varying missingness percentages.

Table 3.3. Variables in the SBD dataset

variable name level description %mis

school ID 2 school identifier 0 %
jurisdiction 2 school jurisdiction 0 %

sector 2 school sector 0 %
geolocation 2 school geographical location 2.21 %

sex 1 pupil gender 0.37 %
indigenous status 1 pupil indigenous status 1.72 %

year level 1 pupil year level 0.76 %
parent1 educ schl 1 parent 1 school education level 17.30 %

parent1 educ nonschl 1 parent 1 non-school education level 16.96 %
parent1 occ 1 parent 1 occupation 22.58 %

parent2 educ schl 1 parent 2 school education level 29.92 %
parent2 educ nonschl 1 parent 2 non-school education level 29.35 %

parent2 occ 1 parent 2 occupation 31.97 %

putation procedure that is able to capture the multilevel structure. Neglecting the
clustering of the data will result in an underestimation of the intraclass correlation.

Finally, the parent variables are critical in the direct estimation of the SEA score
for a school. See Acara (2014) for a detailed explanation of the modeling of Australian
social educational advantage measures.
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3.4.1 Procedure

We partitioned the SBD data into 271 parts based on jurisdiction, sector and geolo-
cation, with parts containing only whole schools and schools not being split among
parts. Each partition contains approximately 10,000 cases. Imputations are performed
using PPMM with 5 imputations and 10 iterations for the algorithm to converge. We
set l = 1, 000 as the sample size for the random subset of observed donor candidates
to speed up the imputation process.

3.4.2 Results

After imputation, the intraclass correlation in the parent variables is similar to the
intraclass correlation of the parent variables in the incomplete data (see Table 3.5),

Table 3.4. Levels of the parent variables in the SBD

Parent occupation
Senior management and qualified professionals
Business managers and associate professionals
Tradesmen/women, clerks and skilled staff
Labourers and related workers
Not in paid work in last 12 months

School education level
Year 12 or equivalent
Year 11 or equivalent
Year 10 or equivalent
Year 9 or equivalent or below

Non-school education level
Bachelor degree or above
Advanced diploma/Diploma
Certificate I to IV (including trade certificate)
No non-school qualification

Table 3.5. Intraclass correlations and average group means in the observed and imputed
data. Shown are the average imputation value (m̂) and the observed (but incomplete) data
estimate (obs) for education (schooled and non-schooled) and occupation for both parents.

ICC MEANS
m̂ obs m̂ obs

parent1 educ schl 0.19 0.17 3.17 3.17
parent1 educ nonschl 0.05 0.05 6.77 6.76

parent1 occ 0.18 0.17 4.36 4.32
parent2 educ schl 0.20 0.18 3.02 3.04

parent2 educ nonschl 0.05 0.06 6.56 6.55
parent2 occ 0.24 0.22 3.20 3.16
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Fig. 3.4. Conditional SEA means from the random effects model and group SEA means
from the fixed effects model compared after imputation. Shown are pooled results for the
conditional means, the group means and the 95 % confidence interval for the conditional
means.

with difference being generally very small. This indicates that the utilized imputation
method was able to give meaningful predictions, thereby taking group membership
into account.

Table 3.5 also shows the fixed effect estimates of the parent variables before and
after imputation. It can be seen that difference is very small, when compared to the
observed values, indicating that PPMM is able to very accurately estimate fixed effect
from the incomplete data.

We used a random effects model to estimate social educational advantage in each
of the imputed datasets. The model takes the form SEAab = µ + Ua + Wab where
SEAab is the score of the bth pupil at the ath school, µ is the overall average, Ua is the
school-specific random effect and Wab is the individual-specific error. The estimates
and variances from the five imputed datasets were combined to obtain a Bayesian
estimate for social educational advantage on the school level.

In Figure 3.4, we compare the conditional means from the random effects model
to the group means from the fixed effects model. Note that the data has been sorted
based on size of the conditional means. It can be clearly seen that the random effects
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model takes the group size into account and that shrinkage towards the fixed effect is
applied.

The larger confidence interval widths belong to the smaller schools that are com-
pletely unobserved. As a result of the increased uncertainty caused by the large
amounts of missingness in these schools, the between imputation variance and, natu-
rally, the confidence interval width increases.

3.5 Discussion

PMM emerges as a very effective imputation technique for multilevel data when the
cluster structure is taken into account. The algorithm is able to preserve the multilevel
nature of the data, leading to precise and well-covered estimates.

Controlling for cluster membership is not the only requirement for a good mul-
tilevel imputation approach. In our view an imputation method for multilevel data
must adhere to the following properties:

1. Structure preserving: The cluster structure should be accounted for during impu-
tation.

2. Generality: The cluster size and the amount of missingness may vary and clusters
may be completely unobserved.

3. Observed plausibility: Imputed values must be within the range of plausible values
such that only realistic values can be imputed.

In a multilevel setting it can be concluded that PMM performance is comparable
to dedicated methods for multilevel data and that PMM is sometimes even able to
outperform dedicated methods, especially when the amount of missingness is large or
when some clusters are completely unobserved.

For small cluster sizes and 50 percent missing data, there can be a slight (but
conservative) overestimation of the ICC. However, in all simulation conditions PMM
yields realistic imputations that are within the bounds of the plausible data values.
In practice, this proves to be especially convenient when imputing continuous ratio
scales, dichotomous variables, categorical variables, or even semicontinuous data.

We proposed partitioned predictive mean matching as a straightforward extension
to the PMM algorithm that divides the big-data multilevel problem into manageable
parts that can be solved by standard predictive mean matching. We have demon-
strated that PPMM performance is similar to the performance of unpartitioned PMM,
proving PPMM to be an effective imputation approach for large datasets, especially
those datasets where dummy coding strategies are computationally not feasible.

The continuous variables in the simulation study in Section 3.3 are normally dis-
tributed. It is well known that deviations from normality can have a serious impact on
the performance of methods that assume such distributions (MIX, NORM): evaluat-
ing the performance of these methods on non-normal data would be pointless. PMM,
on the other hand, is known to handle deviations from normality very well (Vink
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et al., 2014). Our application on real data also demonstrates that PMM can still be
used in situations where non-normal distributions are considered.

PMM is widely recognized as a method that preserves data distributions and,
although it uses underlying methodology that assumes variables to be continuous, we
have shown that it can yield plausible inference for continuous, ordered categorical,
or even dichotomous multilevel data.



Part II

Bivariate imputation
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Multiple Imputation of Squared Terms

Summary. We propose a new multiple imputation technique for imputing squares. Current
methods yield either unbiased regression estimates or preserve data relations. No method,
however, seems to deliver both, which limits researchers in the implementation of regression
analysis in the presence of missing data. Besides, current methods only work under a miss-
ing completely at random (MCAR) mechanism. Our method for imputing squares uses a
polynomial combination. The proposed method yields both unbiased regression estimates,
while preserving the quadratic relations in the data for both missing at random and MCAR
mechanisms.

4.1 Introduction

Multiple imputation (MI) is the method of choice for many incomplete data problems.
MI incorporates the uncertainty about the missing data by creating m > 2 imputed
data sets. Missing values are filled in under an imputation model. The imputed data
that result from the imputation model is then analyzed by the analysis model. Separate
analyses can be combined to get a single inference or set of estimates by making use
of the combining rules derived by Rubin (1987).

The most critical part of MI is specification of the imputation model. It is widely
accepted that the imputation model should embrace all relations of scientific inter-
est. Usually, this is done by incorporating the variables of interest as main factors.
However, things become less clear if the scientific model contains nonlinear terms.

As an example, if we want to predict Y from X and its square X2, then both
X and X2 should be included in the imputation model. Leaving the term X2 out of
the imputation model will result in a downward bias of the slopes when we perform
a regression analysis on the imputed data. However, although it is generally agreed

This chapter is published as Vink, G., & Van Buuren, S. (2013). Multiple Imputation of
Squared Terms. Sociological Methods & Research, 42 (4), 598-607.
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that all squares and interactions should be accounted for in MI, no consensus on how
to do this has been reached.

Von Hippel (2009) reviewed several approaches to imputing squares. The ’trans-
form, then impute’ method calculates the squares and interactions in the incomplete
data for the cases that have no missing values, and then imputes the derived vari-
able like any other variable. The ’impute, then transform’ method imputes variables
in their raw form, and then calculates the derived variable in the imputed data af-
ter imputation. These methods were compared to the passive imputation method
(Van Buuren et al., 1999), implemented in the mice package in R (Van Buuren and
Groothuis-Oudshoorn, 2011), and the ice command for Stata (Royston, 2005).

Von Hippel (2009) advises to use the transform-then-impute method, which de-
livers acceptable regression estimates but heavily distorts the relationship between X
and X2. Figure 4.1 shows that for the transform-then-impute method, imputations
do not follow the relation in the population (observed) data. We agree with Von Hip-
pels conclusion, but do not want to overlook that the transform-then-impute method
yields combinations of imputed values that would never occur, had the data been
observed. Such imputations are implausible and should be rejected on that ground.

We must note that Von Hippel’s conclusions are based on a missing completely at
random (MCAR) mechanism (Seaman et al., 2012), where the missingness does not
depend on the data, which is a limitation in practice. An imputation method would
be more powerful if it yields acceptable inference under the missing at random (MAR)
mechanism, where the missingness may depend on the data, but must not depend on
the missing data itself.

Because existing methods for imputing squared terms are severely limited, we
propose the polynomial combination approach, which yields unbiased regression esti-
mates, while at the same time preserving the consistency between the imputed values,
for MAR and MCAR mechanisms.

4.2 Method

4.2.1 Formulation of the problem

The model of scientific interest is

Y = α+Xβ1 +X2β2 + ε (4.1)

with ε ∼ N(0, σ2). We assume that Y is complete and that X = (Xobs, Xmis) and
X2 = (X2

obs, X
2
mis) are partially missing. The problem is to find imputations for X

such that estimates of α, β1, β2, and σ2 are unbiased, while ensuring that the quadratic
relation between X and X2 will also hold in the imputed data.

4.2.2 Polynomial combination method

Define the polynomial combination Z = (Zobs, Zmis) as the linear combination Z =
Xβ1 + X2β2. The idea is to impute the missing values in Z instead of X and X2,
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Fig. 4.1. Transform-then-impute imputations. Observed (blue) and imputed values (red)
for X and X2.

followed by decomposing the imputed data Z into components X and X2. Imputing Z
reduces the multivariate imputation problem to a univariate problem, which is easier
to manage.

Under the assumption that P (Y,Z) is multivariate normal, we can impute the
missing part of Z as Y β∗+ε∗. Here β∗ is a random draw from the posterior distribution
of the linear regression of Y on Z, and ε∗ is a draw from the residual distribution
Z − Y β̂. In cases where the normal residual distribution is unrealistic, we can use
predictive mean matching (PMM) Little (1988).

The next step is to decompose Z into X and X2. Under Model (4.1) this is
straightforward. The imputed value Z has two distinct real roots:
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X− = − 1

2β2

(√
4β2Z + β2

1 + β1

)
(4.2)

X+ =
1

2β2

(√
4β2Z + β2

1 − β1
)

(4.3)

where the discriminant ∆ = 4β2Z + β2
1 must be greater than zero. The case ∆ = 0

occurs if and only if both β1 and β2 are exactly 0, resulting in just one distinct real
root, namely X0 = −β1/2β2. Since incorporating nonexistent relationships in the
analysis serves no further purpose, we assume that regression estimates are always
unequal to 0.

Given this assumption, for any given Z, we can take either X=X− or X=X+, and
square it to obtain X2. Either root is consistent with Z = Xβ1 + X2β2, but choice
among these two options requires care. Note that the minimum of the parabola is
located at Xmin = −β1/2β2. If we choose X− for all Z, then all imputed X ≤ Xmin

will correspond to points located on the left arm of the parabolic function. This is
generally not as intended. A sampling mechanism to determine whether to choose
from X− or X+ for a given Z is needed.

The choice between the roots is made by random sampling, conditional on Y , Z
and their interaction Y Z. Let V = (Vobs, Vmis), where Vobs is a binary random variable
defined as 0 if Xobs ≤ Xmin and 1 otherwise. We model the probability P (V = 1) by
logistic regression as

logitP (V = 1) = Y βY + ZβZ + Y ZβY Z (4.4)

on the observed data. Assuming that the same model applies to the missing values
in X (i.e., that the missingness mechanism is ignorable), we calculate the predicted
probability P (V = 1). As a final step, a random draw from the binomial distribution is
made, and the corresponding (negative or positive) root is selected as the imputation.
This is repeated for each missing value.

4.2.3 Imputation algorithm

The procedure leads to the following algorithm for imputing squares:

1. Calculate X2
obs for the observed X

2. Use PMM to multiply impute Xmis and X2
mis as if they were unrelated, resulting

in imputations X∗ and X∗2.
3. Estimate the pooled estimates β̂1 and β̂2 by linear regression of Y , given X =

(Xobs, X
∗) and X2 = (X2

obs, X
∗2)

4. Calculate the polynomial combination Z = Xβ̂1 +X2β̂2
5. Multiply impute Zmis by PMM, resulting in imputations Z∗

6. Calculate roots X− and X+ given β̂1, β̂2 and Z∗ using Equations(2) and (3)

7. Calculate the abscissa at the parabolic minimum/maximum Xmin = −β̂1/2β̂2
8. Calculate Vobs = 0 if Xobs ≤ Xmin, else Vobs = 1
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Fig. 4.2. Polynomial combination imputation. Observed (blue) and imputed values (red)
for X and X2.

9. Impute Vmis by logistic regression of V given Y , Z and Y Z, resulting in imputa-
tions V ∗

10. If V ∗ = 0 then assign X∗ = X−, else set X∗ = X+

11. Calculate X∗2

The imputations Z∗ will satisfy Z∗ = X∗β̂1 +X∗2β̂2.

4.3 Results

To illustrate the polynomial combination method, we simulated and compared the
performance of all methods discussed by Von Hippel (2009) against the polynomial
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combination method. Data were generated according to the model Y = α + Xβ1 +
X2β2 + ε, where X is randomly generated from a standard normal distribution. A
larger sample size (n = 10, 000) was chosen to demonstrate convergence. However,
the method works well for smaller sample sizes. We fixed the population intercept α
at 0 and the residual standard deviation σε at 1. Deviations seem to be larger when
the slope of both X and X2 are larger, hence the population slopes β1 and β2 were
set to 1. Let R be a response indicator with

R =

{
1 if X is observed
0 if X is missing

. (4.5)

and let Zmis denote the missing values in Z. Given these settings we created 50 percent
joint missingness in X and X2 according to four MAR mechanisms that follow

P (R = 0|Zobs, Zmis, Y ) = P (R = 0|Zobs, Y ), (4.6)

by using a random draw from a binomial distribution of the same length as Y and of
size 1 with missingness probability equal to the inverse logit

P (R = 0) =
ea

(1 + ea)
.

Setting a = (−X̄ + Xi)/SDX gives 50 percent left-tailed MAR missingness. Right-
tailed, centered and tailed MAR missingness can be created by setting a = (X̄ −
Xi)/SDX , a = .75− [(X̄ −Xi)/SDX ] and a = −.75 + [(X̄ −Xi)/SDX ], respectively.
Adding or substracting a constant moves the sigmoid curve, which results in different
missingness proportions.

As an analysis, we used linear regression to see whether the population values
could be estimated after imputation. We repeated the analyses 100 times.

The regression estimates after applying the polynomial combination imputation
can be found in Table 4.1. The estimated coefficients of the imputed X and X2, the
coefficient of the intercept α and the residual standard deviation σε are all close to
their respective population values. Missingness mechanisms that involve the right tail
show slightly larger deviations.

In contrast, Table 4.1 also displays the performance of the impute-then-transform
method regression estimates under the same simulation conditions. The impute-then-
transform method yields biased regression estimates, even under MCAR.

Table 4.1 also shows the performance of the passive imputation method. Passive
imputation performance is similar to the problematic performance of the impute-then-
transform method, as both methods calculate X2 afterwards.

Finally, the transform-then-impute method yields unbiased regression estimates,
but only for MCAR. Although some estimates are retrieved, performance is severely
impaired under the MAR assumption (see Table 4.1).

All in all, the polynomial combination method yields regression estimates that
are both unbiased and preserve the data relation between X and X2. The polynomial
combination method also perfectly reproduces the population relation between X and
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Missingness Mechanism
MCAR MARleft MARmid MARtail MARright

Polynomial combination
Intercept (α) 0 -0.01 -0.01 -0.05 -0.07
Slope of X (β1) 1 1 1 0.96 0.96
Slope of X2 (β2) 1 1 1.01 1.06 1.09
Residual SD (σε) 1 1 1 1.03 1.05
R2 0.75 0.75 0.75 0.73 0.73

Impute, then transform
Intercept (α) 0.39 0.29 0.26 0.52 0.56
Slope of X (β1) 0.93 0.94 0.87 1.01 1.06
Slope of X2 (β2) 0.61 0.60 0.67 0.56 0.66
Residual SD (σε) 1.48 1.44 1.41 1.56 1.62
R2 0.45 0.48 0.5 0.39 0.34

Passive imputation
Intercept (α) 0.39 0.29 0.26 0.52 0.56
Slope of X (β1) 0.93 0.94 0.87 1.01 1.05
Slope of X2 (β2) 0.61 0.60 0.68 0.56 0.66
Residual SD (σε) 1.48 1.45 1.41 1.57 1.62
R2 0.45 0.48 0.50 0.38 0.34

Transform, then impute
Intercept (α) 0 0.19 -0.13 0.01 -0.05
Slope of X (β1) 1 0.91 0.97 1.14 1.32
Slope of X2 (β2) 1 0.91 0.95 1.14 1.32
Residual SD (σε) 1 0.95 1 1.06 1.15
R2 0.75 0.77 0.75 0.72 0.67

Table 4.1. Average parameter estimates for different imputation methods under five dif-
ferent missingness mechanisms over 100 imputed datasets (n = 10, 000) with 50% missing
data. The population parameters are α = 0, β1 = 1, β2 = 1, σε = 1 and R2 = .75

its square X2 in the imputed data. See Figure 4.2 for a graphical representation of
the population and imputed data relations between X and X2, as generated by the
polynomial combination method.

We also looked at the mean and covariance matrix as reproduced by the imputed
data and compared it to the population values. The mean and covariance matrix of
(X,X2, Y ) are

µ =

 0
1
β2

 and Σ =

 1
0 2
β1 2β2 1 + β2

1 + 2β2
2

 (4.7)

A set of k mean values can be pooled to a single residual mean value with
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∆µ =
1

k

k∑
i=1

|µi −mi| (4.8)

where mi is the ith mean value for the imputed data. Likewise, a pooled residual
covariance matrix can be created by

∆Σ =
1

k

k∑
i=1

|Σi − Si| (4.9)

where Si is the ith covariance matrix of the imputed data. Performing a small sim-
ulation of n = 100 with various regression weights and combining the results with
Equations (4.8) and (4.9), yields the following pooled residual mean and covariance
matrix.

∆µ =

 0.003
−0.004
−0.003

 and ∆Σ =

 −0.004
0 0.007

−0.004 0 −0.012

 (4.10)

The results in Equation (4.10) suggest that the mean and covariance matrix in the
population data are accurately preserved in the imputed data. Given that only normal
imputations that preserve the mean and covariance matrix from the population data
can yield unbiased imputations, we can now confidently say that the polynomial
combination method yields unbiased regression estimates and delivers transformed
variable imputations that are consistent with each other.

All computations in this study have been carried out in R and all imputations
are generated with the mice package in R (Van Buuren and Groothuis-Oudshoorn,
2011) with m = 5 multiple imputations. A mice.impute.quadratic routine that
implements the polynomial combination method is available in mice.

4.4 Conclusion

The polynomial combination method as developed here provides unbiased estimates
for problems where incomplete X and X2 are both in the complete data model.
It merges imputation techniques and decomposition of the quadratic equation to
obtain the same unbiased regression estimates as the basic transform-then-impute
method, while preserving the relations betweenX andX2. Also, it performs well under
both MCAR and MAR missingness mechanisms. Our advice is to use the polynomial
combination method to impute transformed variables with squared relations.

We note that the simulation conditions used are rather harsh. For example, 50
percent of X is missing and some missingness mechanisms severely limit the amount
of usable predictive information, especially right-tailed MAR missingness. Also, note
that imputations are based on just one covariate. In real-life data sets, conditions
for imputing the data are often much better. Yet, also for simpler incomplete data
problems, the polynomial combination method yields the best possible inferences even
though the difference with the results from other methods may be smaller.
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We limited our calculations and analyses to squares, which are essentially interac-
tions between two identical variables. Interactions between different variables remain
best imputed using the transform-then-impute method. The polynomial combination
method can be generalized to more complex non-linear combinations. We expect that
the proposed method also applies to problems in which the scientifically interest-
ing model contains multiple versions or transformations of X, such as interactions
between different variables, higher degree polynomial equations and perhaps even
splines, which are essentially piecewise polynomials. Exploring such applications of
the polynomial combination method is subject to future work.





5

Predictive Ratio Matching Imputation of Nested
Compositional Data with Semicontinuous Variables

Summary. Imputing compositional data is challenging because imputations must obey the
restrictions in the data while remaining strictly non- negative. The usual methods yield
imputations that do obey the re- strictions, but may severely distort the distributions and
the relations among the components. We propose predictive ratio matching (PRM) as a
general imputation method for compositional data. PRM imputes compositional data by
iteratively updating the pairwise ratios in the data. The proposed method emerges as a very
effective imputation approach for nested compositional data that can handle the skewed
semicontinuous variables. Further, PRM yields imputations that obey sum restrictions, while
keeping the data distributions and relations among components intact.

5.1 Introduction

Compositional data can be defined as a set of parts that obey a certain edit restriction,
such that the parts have to sum up to a certain total. These parts can be considered as
proportions that sum up to 1 or, perhaps more conveniently, as raw data that sums
up to a certain total. In both approaches to compositional data, the information
is contained in the ratios between each part and the total. Compositional data in
the form of raw data is often incompletely encountered in official statistics, such as
income components or expenditure of household budget. The missing values in the
data pose problems in carrying out and interpreting analyses that assume the data
to be completely observed.

Let us consider x1 as a combination of components x2, . . . , xD such that

x1 = x2 + x3 + · · ·+ xD, (5.1)

This chapter is submitted as Vink, G., Pannekoek, J., & Van Buuren, S. Predictive ratio
matching imputation of nested compositional data with semicontinuous variables.
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where x2, . . . , xD take real positive values including 0. Suppose we have the following
compositional data for D = 3 with missing values

x1 x2 x3 x4
32 10 15 7
18 0 18 0
22 6 3 −
14 0 − −
− − 16 −
8 22 − 4
30 − − −
− 5 12 15

For some of the missing values, it is possible to calculate the missing value. For
example, row 3 yields x4 = 22− (6 + 3) = 13, and row 8 yields x1 = 5 + 12 + 15 = 32.

If the data are inconsistent with the constraint (as in row 6) it follows that some
values must be in error and imputations based on erroneous observations will also lead
to erroneous or inconsistent data. Such errors need to be corrected before imputations
can be generated. There is a vast literature on methods of detection and correction of
errors in survey data - see e.g. (De Waal et al., 2011) -, but this topic is outside the
scope of this paper. In this paper we assume that such inconsistencies have already
been taken care of. The objective of the research is to generate multiple imputations
for x2, . . . , xD, assuming that x1 is observed for every unit in the data. For situations
where the total is missing (as in the fifth row) we require that this total has already
been consistently filled in by some other method.

5.1.1 Existing approaches

Compositional data can be thought of as vectors of proportions, such that it holds
that the D non-negative parts of any vector x sum up to a certain observed total. All
the information about compositional data is encapsulated in the ratios between the
components (Aitchison, 1986). Consequently, the proportions of the different parts of
x obey

x2
x1

+
x3
x1

+ ...+
xD
x1

= 1 (5.2)

which is equivalent to Equation (5.1), where

x2 ≥ 0, x3 ≥ 0, ..., xD ≥ 0. (5.3)

Aitchison (1986) replaces the natural non-negativity condition of (5.3) by an as-
sumption of strict positivity, thereby creating a formal definition of a D-dimensional
simplex where all components must be larger than zero. In practice this may be unde-
sirable or even unrealistic as bonafide zeros are observed. Examples of such bonafide
zeros are, for instance, costs for investments or temporary personnel for businesses
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that did not have such costs in a certain time frame, or rounded zeros in geology. Sug-
gestions for dealing with zeros in compositional data sets have been made (Aitchison,
1986; Mart́ın-Fernández et al., 2003; Aitchison et al., 2003; Palarea-Albaladejo et al.,
2007).

Several strategies have been proposed to deal with missingness in compositional
data sets. Mart́ın-Fernández et al. (2003) advocate a multiplicative strategy for deal-
ing with incomplete compositional data. In this multiplicative strategy, compositional
parts are considered as proportions of a total. Missing proportions can be imputed and
observed proportions have to be rescaled in concordance with the imputed propor-
tions, thereby replacing the composition with a composition without missing values.
As a result, observed values are altered to obtain a new composition that obeys all
restrictions in problems where a fixed total is considered. Mart́ın-Fernández et al.
(2003) do not consider the ‘best’ value and do not introduce or suggest an imputation
method.

Tempelman (2007) proposes stochastic and deterministic EM-based approaches,
based on the Dirichlet distribution (also known as multivariate beta distribution),
that can sometimes outperform non-parametric methods, such as nearest neighbor
and random hot deck methods. Tempelman (2007) compares two Dirichlet imputation
methods, one where expectations serve as imputations and one where random draws
serve as imputions, to hot deck approaches that use random ratios or the ratio of the
nearest neighbor, respectively.

Tempelman (2007) advices to use the expectation-based Dirichlet method when
the aim of imputation is to preserve the population values, while hot deck approaches
should be used when the distribution of the data is of interest. The EM-based ap-
proaches only model one equality restriction at once, which might be a limitation in
practice, where variables can be subject to multiple equality restrictions.

Hron et al. (2010) propose a k-nearest neighbor (kNN) approach and an iterative
model based imputation (IMI) technique that starts initially from the result of the
proposed k-nearest neighbor procedure. The iterative model based imputation follows
a sequential regression imputation strategy, where the regressions are carried out
in an isometric log ratio (ilr) space (Egozcue et al., 2003). The reason for this ilr-
transformation is that compositional data has no representation in Euclidean space,
but rather in the simplex space. Back-transforming the ilr transformed data, however,
results in updating both the original missings and the non-missing cells. Even though
the ratios do not change, this may be undesirable when data analysis is considered, as
observed values are usually assumed to be left intact. Hron et al. (2010) conclude that
the proposed iterative model based imputation technique improves the initial kNN
estimation and that it performs as least as good as existing imputation methods for
compositional data. Hron et al. (2010) adapt the definitions from Aitchison (1986) and
assume all components to be larger than zero. This assumption poses a restriction
in practice, as compositional data may often be semicontinuous in many fields of
statistics.

Another intuitive solution may be to sample the multivariate compositional dis-
tribution from a donor wherein all compositional parts are observed. There are a few
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reasons that advocate the preference for a bivariate over a multivariate approach.
First, sampling compositional distributions from a probable donor record works for
missings in a single composition, but can not be generalized to nested compositions.
For example, finding imputations by matching on an observed compositional distri-
bution may lead to the sum of a nested compositional sum being smaller than the
sum of its respective observed parts.

Second, sampling compositional distributions poses a much harsher restriction on
the probable donor pool, especially when the number of compositional parts increases,
as the number of observed records one can sample from decreases dramatically in the
case of intermittent missingness. In general, when considering ratios, it can be said
that a bivariate matching approach allows for the largest possible donor pool in the
case of intermittent multivariate missingness. This research focuses on the problem of
nested compositions and will therefor discuss bivariate imputation.

5.1.2 Properties

In our view an imputation method for compositional data must adhere to the following
properties:

1. Consistency: Imputed and observed parts must sum to the total.
2. Structure preserving: The ratios between the components should be preserved and

observed values must be left intact.
3. Generality: The number of missing components per record can vary and the com-

ponent can be part of multiple nested compositions.
4. Observed plausibility: Imputed values must be within the range of plausible values.

The last property condition is particularly important when e.g. there are multiple
semicontinuous variables in the composition, as imputations must either be attributed
to the point mass or to the continuous part of the data, or when estimates at the edge
of the distributions are considered. Not considering plausibility given the data at hand
can lead to negative values being imputed in strictly positive data, for example.

5.2 Predictive Ratio Matching

We propose predictive ratio matching (PRM); a new, easily applicable bivariate hot
deck imputation method for nested compositional data that makes use of the pairwise
nature of the ratios between components.

5.2.1 Introduction of notation

Let X denote the matrix with n rows and p columns that contains the data. Further,
xij denotes the i, jth element of X, where i = 1, . . . , n and j = 1, . . . , p and xj
denotes the jth column in X. Since we will consider imputation of the data in a
pairwise manner, we also define j′ = 1, . . . , j − 1 as the paired counterpart of j.



5.2 Predictive Ratio Matching 69

Together, j and j′ can be used to form the lower triangular of the matrix of all
possible combinations between the variables in X. Next, we define R to be a response
indicator matrix of the same size as X, indicating 1 if xij is observed and 0 if xij is
missing. We use Xjj′ to denote the columns j and j′ in matrix X and we use X−jj′

to denote matrix X except columns j and j′. Finally we denote observed elements
with obs and missing elements with mis, such that e.g. Xobs and Xmis denote the
observed and missing values in X, respectively.

5.2.2 A simple example

Let us consider X as a matrix containing the following 3-part compositional data

x1 = x2 + x3 + x4. (5.4)

Let x2 and x3 be jointly missing for some cases. We know that the total amount∑
Xjj′ = xj + xj′ to be distributed over x2 and x3 equals∑

X32 = x2 + x3 = x1 − x4. (5.5)

The distribution of
∑
Xjj′ over xj and xj′ remains unknown. Assuming the ratio

πjj′ = xj′/
∑
Xjj′ is the same in the observed and the missing data, we can solve

this by finding imputed ratio π∗jj′ through matching on the ratio πjj′ from a probable
donor record d, yielding

x∗2 = π∗32
∑

X32, (5.6)

and its complement

x∗3 = (1− π∗32)
∑

X32, (5.7)

as imputations for x2 and x3, where π∗32 is the imputed ratio for pair 32 and comes
from the distribution

Pr(π∗jj′ |πjj′ , X−jj′) (5.8)

of donors with both xj and xj′ observed.
There are multiple strategies for obtaining an imputation π∗jj′ . Given the highly

skewed nature of compositional data and given that imputed and observed values
are allowed to be zero (as in semicontinuous data), we propose to use predictive
mean matching (PMM) to impute the ratios. PMM is known to be very accurate in
obtaining correct statistical inference and in retrieving the amount of zeros, even in
highly skewed semicontinuous data (Vink et al., 2014).

5.2.3 Multivariate missingness in a single composition

If more than two components are missing in the composition, starting values can be
computed that obey (5.4), whereafter the above approach can be iteratively used to
obtain imputations for all pairs, each time selecting a probable donor ratio from the
observed data and redistributing the amount over the current pair.
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Suppose that x2, x3 and x4 are jointly missing for some cases. We know that the
total amount

∑
Xjj′ = xj + xj′ to be distributed over the unique pairs equals∑

X32 = x2 + x3 = x1 − x4 (5.9)∑
X42 = x2 + x4 = x1 − x3 (5.10)∑
X43 = x3 + x4 = x1 − x2. (5.11)

When x2, x3 and x4 are jointly missing, these sums can not be deductively calculated
from the observed data. This stresses the need for starting values. Any starting value
will be sufficient as long as the compositional structure remains intact. For example, a
simple strategy would be to divide a record’s total amount of missingness x1−

∑
Xobs
−1

equally over all the missing components in a record.
Once the starting values have been filled in, the approach introduced in 5.2.2 can

be used to impute the missing unique pairs in the data in an iterative manner. For
example, first pair X32 can be redistributed based on the ratio of a probable donor
record. Because we found starting values that obey the composition, we can simply
redistribute the amount over x2 and x3 based on the imputed ratio. We can continue
this procedure for pair X42 and X43 and repeat it in the next iteration. We can
continue iterating until convergence has been reached.

The MAR assumption implies that only the joint-missings for each pair have to
be calculated and imputed. Partial missings in Xjj′ will be solved in another pair
Xjj′ where xj and xj′ are both missing. Skipping over partially observed pairs is
computationally convenient and ensures that the observed data remains intact.

It is wise to reorder the D-part composition based on the mean of the components.
In that case ratios between adjacent variables are closer to 1. Variables with similar
means are more efficiently imputed during the iterations, leading to better perfor-
mance in datasets where some of the ratios between observed variable means are very
large, or very small.

PRM algorithm

We require that starting values have been filled in and that any deductive imputation
has been applied. Carry out the following steps for all

(
j
2

)
unique pairs Xjj′ .

1. Calculate πobsjj′ and replace all πobsjj′ that are not defined (when both xj and xj′

are 0) with πobsjj′ = 0.5.

2. Impute π∗jj′ by means of PMM with πobsjj′ conditional on X−jj′ .
3. For all joint missings in the pair Xjj′ distribute

∑
Xjj′ following

x∗j′ = π∗jj′
∑

Xjj′

x∗j =
∑

Xjj′ − x∗j′ ,



5.2 Predictive Ratio Matching 71

Repeat the above algorithm until convergence is reached. For multiple imputation do
this m ≥ 2 times, preferably in parallel with different random seeds, each time saving
the completed dataset.

5.2.4 Nested compositions

Suppose that we have a nested composition, where x4 is a combination of x5 and x6,
such that

x4 = x5 + x6, (5.12)

resulting in the following extended data set from Section 5.1.

x1 x2 x3 x4 x5 x6
32 10 15 7 4 3
18 0 18 0 0 0
22 6 3 13 − −
14 0 − − − 6
30 − − − − 2
32 5 12 15 7 8

For the cases where x4 is missing, the problem can be simplified to

x1 = x2 + x3 + x5 + x6, (5.13)

where x4 is simply the sum of x5 and x6 and does not need to be imputed, but can
be deductively calculated after x5 and x6 are imputed. This reduces the problem to a
single composition, which can easily be solved by the proposed PRM algorithm from
Section 5.2.3. The imputed value for x4 can then be calculated as

x∗4 = x5 + x6, (5.14)

yielding a solution where all imputed values obey all restrictions.
For the cases where x4 is observed, the problem can be divided into the indepen-

dent imputation problems

x1 = x2 + x3 + x4 and x4 = x5 + x6. (5.15)

Solving these separate compositions is also straightforward with the proposed PRM
algorithm from Section 5.2.3. For example, an imputation for x3 can be obtained by

x∗3 = (1− π∗32)(x1 − x4) (5.16)

and imputations for x5 are obtained by

x∗5 = π∗65(x4). (5.17)

In both cases donors are drawn from within the compositional level of the missing
values. If more than one pair in any of the (sub)compositions are missing, the above
approach can be carried out iteratively.
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Divide-and-conquer approach

In order to facilitate an approach that can handle compositions that are nested in
other nested compositions, the compositional structure needs to be recorded. Let B
denote a square binary matrix with p rows and p columns and zero diagonal, indicating
1 if a variable (column) is part of a compositional sum (rows). Column sums for B
take value 0 for the highest level compositional sum only and take value 1 for all other
variables. Row sums of B take values between 0 (when Bj is not a total) and p − 1,
indicating the number of parts in the decomposition of the j’th variable.

For ease of the argument let the rows and columns to be ordered with respect to
the nesting levels from the highest level composition to the lowest level composition.
For the previously used example in 5.2.4, the p× p matrix B takes the following form

B =



x1 x2 x3 x4 x5 x6

x1 0 1 1 1 0 0
x2 0 0 0 0 0 0
x3 0 0 0 0 0 0
x4 0 0 0 0 1 1
x5 0 0 0 0 0 0
x6 0 0 0 0 0 0

.

We use bc to denote the c’th row in B, with c = p, . . . , 1. Note that
∑
bc denotes the

number of parts in the composition. Next, xic denotes the total of the c’th composition
for row i in X, and ric indicates whether xic is observed or missing.

Extended algorithm

We require that starting values have been filled in and that any deductive imputa-
tion has been applied. We use R′ and B′ to denote “shadow copies” of R and B,
respectively. Carry out the following steps for all rows c in B (c = p, . . . , 1).

1. If ric = 0 and if
∑
b′c 6= 0

a) Promote all nonzero elements and the diagonal in b′c to row k of B′, where k
is the row for which Bkc = 1 and k = 1, . . . , p.

2. If ric = 1 and if
∑
b′c 6= 0

a) Impute the missing parts in the composition by means of PRM using miss-
ingness indicator R′.

b) Set r′ij = 1 if xij has been imputed in (a).
c) Calculate unobserved nested totals (if any) in the current composition based

on the imputed parts.
3. Repeat steps 1 and 2 for all rows c and afterwards set R′ = R and B′ = B.
4. Reiterate the above steps until convergence is reached.

For multiple imputation execute the above algorithm m ≥ 2 times, preferably in
parallel with different random seeds, each time saving the completed dataset.
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If the data is ordered based on the compositional hierarchy and if c moves from p to
1, nested compositions are considered before their respective higher level composition.
The use of shadow copy B′ makes it straightforward to consider nested compositions
for which the total is not observed at a later stage in a higher level composition, where
solving the nested compositional structure is possible. For example, shadow B′ for the
example from 5.2.4 takes the following form

B =



x1 x2 x3 x4 x5 x6

x1 0 1 1 0 1 1
x2 0 0 0 0 0 0
x3 0 0 0 0 0 0
x4 0 0 0 0 1 1
x5 0 0 0 0 0 0
x6 0 0 0 0 0 0

.

Simultaneously, making use of shadow R′ prevents nested compositions for which
the total has been observed and for which missing values have been imputed already,
to be updated at a later stage. This ensures that the overall compositional structure
remains intact and is computationally convenient, because only values that are ‘still
missing’ have to be considered.

The proposed algorithm naturally handles any combination of nested compositions
by determining for each composition which cases can be solved at the moment and
which cases have to be promoted and solved within a higher level compositional prob-
lem. Ultimately, if none of the (multiply) nested compositional parts have observed
totals, the composition is solved at the top-level composition by the PRM algorithm.
For example, the PRM algorithm may yield the following multiple imputation (m = 2)
solution for the case from Section 5.2.4.

x1 x2 x3 x4 x5 x6 x1 x2 x3 x4 x5 x6
32 10 15 7 4 3 32 10 15 7 4 3
18 0 18 0 0 0 18 0 18 0 0 0
22 6 3 13 6.1 6.9 22 6 3 13 6.1 6.9
14 0 2.7 11.3 5.3 6 14 0 2.7 11.3 5.3 6
30 7.1 11 11.9 9.9 2 30 0 28 2 0 2
32 5 12 15 7 8 32 5 12 15 7 8

Finding starting values for nested compositions

It is important to find acceptable starting values for the top-level composition that
take the constraints put onto the values by the nested composition into account.
Let gi denote the amount that is missing in the top-level composition in xi and let
z = 1, . . . , D denote the D parts in the top-level composition. Finding suitable starting
values for the top-level composition can be easily done by calculating, for each missing
component xiz in the top-level sum a starting value s, where
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siz =

∑
(xmisiz )

tx
gi, (5.18)

with
∑

(xmisiz ) denoting the observed sum of the parts in the nested composition
belonging to component xmisiz and tx denoting the sum over all nested compositional
parts for all missing components xmisij in the top-level sum. If a component has no

nested parts, or if all nested parts in a component are missing,
∑

(xmisij ) should be
set to 0.

For example, a solution for the missing parts in row 4 in the example from Section
5.2.4 that obeys the restriction would be

s43 =
0

6
× 14 = 0 and s44 =

6

6
× 14 = 14. (5.19)

The above procedure ensures that starting values are at least as large as the sum
of a components respective parts. It does so by taking a record’s observed distribution
and multiplying it with the unobserved mass, thereby leaving observed components
in the top-level sum untouched. If starting values of the highest level components
are properly calculated, starting values for nested compositions can be easily filled in.
Please note that any starting value that obeys the compositional structure of the data
will do for PRM and that the above procedure does not consider the best starting
value.

5.3 Application

To illustrate PRM, we carried out a simulation study on a complete subset of a real
dataset from official statistics, the Dutch Wholesaler Data (DWD) for 2007. The DWD
dataset contains edited information on 1067 wholesalers for a set of cost statistics (a,
e, g and h) that sum up to a set total x1, leading to composition

x1 = a+ e+ g + h, (5.20)

where x1 are the total operating costs and a, e, g and h represent the company
depreciation, buying costs, personnel costs and other costs, respectively.

Component a is a single measure and component h forms a subcomposition with
21 parts, wherin the first component is summed over the following 3 parts, leading to
nested composition

h1 = h2 + h3 + h4. (5.21)

Finally, subcompositions g and e contain 9 and 5 parts, respectively. All parts over all
subcompositions differ in mass and take proportions in the top-level sum x1 ranging
from .0001 to .9005.

All simulations are carried out in R 3.0.2 (R Core Team, 2013) with 5 completed
datasets, 2 iterations and 100 simulations. For the predictive mean matching step in
the algorithm, R-package mice (version 2.18) Van Buuren and Groothuis-Oudshoorn
(2011) is used.
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5.3.1 Imposing missingness

We impose missingness in the DWD by means of two different missingness mecha-
nisms: missing completely at random (MCAR) and missing at random (MAR). We
distinguish between left-tailed MAR missingness and right-tailed MAR missingness.
Particularly of interest is left-tailed MAR missingness, a realistic missingness mecha-
nism in official business statistics, as larger companies tend to be always observed.

First, let xj = (xobsj , xmisj ) denote the variable (compositional part) to be made
incomplete, with obs and mis indicating the observed and missing sections of xj ,
respectively. Second, let R denote the missingness indicator with R = 0 when xj is
missing and R = 1 when xj is observed. We create MAR missingness in each compo-
sitional part xj , based on x1 in our samples according to the following mechanism

P (R = 0|xobsj , xmisj , x1) = P (R = 0|xobsj , x1),

by using a random draw from a binomial distribution of the same length as xj and of
size 1 with missingness probability equal to the inverse logit

P (R = 0) =
exp(α)

(1 + exp(α))
.

In the case of left-tailed MAR missingness, α = (−x̄1 + x1)/σx1
gives 50 percent

missingness, where σx1 indicates the standard deviation of variable x1. For right-
tailed MAR missingness, this can be achieved by choosing α = (x̄1−x1)/σx1 . Adding
or substracting a constant moves the sigmoid curve in the horizontal direction, which
results in different missingness proportions. Simulations are carried out with 15 and
25 percent univariate missingness. The number of completely observed rows varies
between 0 and 15.

Bivariate missingness

PRM is a bivariate imputation algorithm that uses the relation between observed
values in each pair. As a consequence, the actual missing data problem is larger than
the amount of univariate missingness would suggest. For example, under MCAR,
15 percent univariate missingness leads to 15 + (.15 ∗ 75) = 27.75 percent bivariate
missingness and 25 percent univariate missingness results in 25 + (.25 ∗ 75) = 43.75
percent bivariate missingness.

5.3.2 Evaluation

Performance of the method is evaluated by looking at studying unbiasedness of the
estimate of the population mean (weighted sums), coverage rates of the 95% confidence
interval of the estimates, ratio’s between components after imputation and the amount
of zeros that is recovered by the algorithm.
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Fig. 5.1. Population boxplots for nested sums a, e, g and h and their respective smallest
nested parts e3, g5 and h6. Displayed are the distribution of proportions the respective
variables take in the top-level sum x1 and, next to it, the distribution of

√
x1.

5.4 Results

The extreme skewness in the distribution of the variables are displayed in Figure 5.1.
The skewed nature of the variables poses a difficulty for any imputation algorithm.
The hot deck method used in the PRM algorithm is highly non-parametric and does
not directly depend on any distributional assumption, resulting in imputations that
are very close to the distribution of the observed data (Vink et al., 2014).

5.4.1 Means

Table 5.1 shows simulation results for estimates of the population mean. It becomes
clear that PRM under left-tailed MAR missingness outperforms the results of PRM
under MCAR and right-tailed MAR missingness, thereby showing very low bias across
all simulation conditions. Simulation results for left-tailed MAR missingness are very
stable across the simulation conditions. Performance under MCAR decreases slightly
when more missingness is introduced, but overall performance under MCAR can still
be considered to be good. In all simulation conditions, the performance of imputation
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Table 5.1. Means of the variables in DWD. Displayed are the proportions the mean of the
variables take in sum x1, for the true population values and for imputations under 3 different
missingness mechanisms for 15 percent and 25 percent intermittent univariate missingness.

15% missingness 25 % missingness
true mcar left right mcar left right

x1 1.000 1.000 1.000 1.000 1.000 1.000 1.000
a 0.005 0.006 0.005 0.015 0.007 0.005 0.016
h 0.055 0.057 0.056 0.258 0.066 0.057 0.276
g 0.039 0.041 0.040 0.159 0.047 0.041 0.157
e 0.901 0.896 0.900 0.568 0.881 0.897 0.551
h1 0.001 0.001 0.001 0.050 0.002 0.001 0.043
h2 0.001 0.001 0.001 0.017 0.001 0.001 0.015
h3 0.000∗ 0.000∗ 0.000∗ 0.014 0.001 0.000∗ 0.014
h4 0.000∗ 0.000∗ 0.000∗ 0.019 0.000∗ 0.000∗ 0.014
h5 0.004 0.004 0.004 0.016 0.005 0.004 0.018
h6 0.000∗ 0.000∗ 0.000∗ 0.006 0.000∗ 0.000∗ 0.005
h7 0.000∗ 0.000∗ 0.000∗ 0.007 0.000∗ 0.000∗ 0.005
h8 0.001 0.001 0.001 0.011 0.001 0.001 0.009
h9 0.002 0.002 0.002 0.012 0.002 0.002 0.015
h10 0.000∗ 0.000∗ 0.000∗ 0.006 0.000∗ 0.000∗ 0.004
h11 0.003 0.004 0.003 0.015 0.004 0.004 0.014
h12 0.001 0.002 0.001 0.011 0.002 0.001 0.017
h13 0.012 0.012 0.012 0.018 0.012 0.012 0.019
h14 0.001 0.001 0.001 0.010 0.002 0.001 0.009
h15 0.001 0.001 0.001 0.009 0.001 0.001 0.009
h16 0.006 0.006 0.006 0.017 0.008 0.006 0.026
h17 0.001 0.001 0.001 0.009 0.001 0.001 0.010
h18 0.003 0.003 0.003 0.013 0.004 0.004 0.013
h19 0.004 0.004 0.004 0.010 0.004 0.004 0.012
h20 0.006 0.006 0.006 0.015 0.006 0.005 0.022
h21 0.003 0.003 0.003 0.010 0.003 0.003 0.011
h22 0.006 0.006 0.006 0.013 0.007 0.006 0.015
g1 0.028 0.028 0.028 0.039 0.029 0.028 0.043
g2 0.003 0.003 0.003 0.013 0.004 0.003 0.013
g3 0.002 0.002 0.002 0.013 0.003 0.002 0.011
g4 0.000∗ 0.001 0.000∗ 0.014 0.001 0.001 0.010
g5 0.000∗ 0.000∗ 0.000∗ 0.010 0.001 0.000∗ 0.006
g6 0.003 0.003 0.003 0.020 0.004 0.003 0.025
g7 0.001 0.002 0.001 0.028 0.002 0.001 0.030
g8 0.000∗ 0.000∗ 0.000∗ 0.007 0.001 0.000∗ 0.005
g9 0.002 0.002 0.002 0.016 0.002 0.002 0.013
e1 0.866 0.854 0.863 0.511 0.824 0.858 0.477
e2 0.005 0.007 0.005 0.013 0.011 0.006 0.016
e3 0.004 0.006 0.005 0.010 0.009 0.005 0.014
e4 0.015 0.016 0.016 0.014 0.019 0.016 0.020
e5 0.011 0.012 0.011 0.020 0.018 0.012 0.024

∗ indicates values smaller than .0005
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Fig. 5.2. Simulation results for 25 percent univariate missingness. Please note that means
are log-transformed. Red lines represent completed data, black lines represent observed data.

under right-tailed MAR missingness is worse than for MCAR and left-tailed MAR
missingness. As would be expected, variables with smaller mean values show larger
relative bias than variables with larger mean values. Thus, in absolute sense, the bias
is always small. However we need care under left-tailed MAR and MCAR when we
study the relative contributions of small parts. Figure 5.2 clearly display this finding.
The slight underperformance of MCAR and more pronounced loss in performance for
right-tailed MAR, compared to left-tailed missingness, is caused by the distribution
of the pairwise relations in the data and the missingness creation itself. For example,
under MCAR each cell has the same probability to be missing, resulting in larger
values and smaller values being ‘removed’ with the same likelihood. However, the
algorithm iteratively redistributes the sum of two pairs of variables over the pairs,
based on their individual mass. The redistribution of amounts over cases with very
large (or very small) ratios leads to greater relative impact on the mean of the smaller
value, thus causing bias in this particular setting.

The log-transformation of the means in Figure 5.2 makes this property more appar-
ent. With right-tailed MAR missingness, larger values are more likely to be missing,
resulting in a more equal redistribution of missing amounts over the missing cells in
each case. In contrast, a left-tailed MAR missingness mechanism creates more missing
data in the smaller values, but leaves the larger values intact. As a result, there is a
larger relative bias in the smaller values. However, the absolute bias for all variables
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Fig. 5.3. Coverage rates plotted against the mean for different missingness mechanisms with
different amounts of missingness. Please note that means are log-transformed

is very low for any missingness amount. Especially for economical and business statis-
tics, the bias towards larger values for smaller posts is a surprisingly useful property,
as the missingness in these fields is almost exclusively considered to be left-tailed.

5.4.2 Coverage and confidence interval width

There is a relation between coverage rates and the relative importance (or impact)
the variables have in the composition. This relation is shown in Figure 5.3. For 15
and 25 percent univariate missingness, coverage rates are very close to the nominal
level.

The performance of PRM for left-tailed MAR missingness and MCAR is similar.
However, when right-tailed MAR missingness is considered, the algorithm tends to
undercover the confidence interval for components with large means. In general, for
smaller amounts of missingness under MCAR or left-tailed MAR, variables with less
mass are more prone to undercoverage than variables with more mass. This is the
result of the redistribution of missing amounts over the incomplete pairs (see Section
5.4.1 for a more detailed explanation).

The relation between mean and coverage rate becomes less apparent in the case
of 50 percent univariate missingness (not shown), due to grand loss of information.
Interestingly, for large amounts of missingness, left-tailed MAR missingness remains
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Fig. 5.4. The proportion of zeros after imputation, plotted against the true proportion of
zeros in the population. Shown are estimates under different missingness mechanisms with
different amounts of missingness.

able to sufficiently cover the confidence interval of the very large compositional parts,
as opposed to the other missingness mechanisms.

5.4.3 Zeros

Predictive mean matching is known to be very accurate in retrieving the amount of
zeros in semicontinuous data (Vink et al., 2014). Since predictive mean matching is
used in PRM as a donor selection approach, it is expected that the percentage of
zeros after imputation will not be very different from the population values. Figure
5.4 shows the bias of the amount of zeros after imputation plotted against the true
population values.

From Figure 5.4 it follows that the performance of PRM in retrieving the amount
of zeros after imputation depends mostly on the true amount of zeros in the pop-
ulation and in to a lesser extend on the severity of the missingness. However, with
increasing amounts of zeros, accuracy naturally decreases. In situations with 15 per-
cent univariate missingness bias is negligible. For 25 percent univariate missingness,
bias is acceptable, especially as larger biases only occur in variables with at least
eighty percent zeros; a situation that poses harsh restrictions on the amount of usable
information in the data.
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There is no clear difference in performance of PRM over different missingness
mechanism. This can be explained by the data-driven hot deck nature of the approach.

5.4.4 Distributional shapes

Figure 5.5 displays the densities of the 4 highest level compositional parts for 25 per-
cent right-tailed MAR missingness; a missingness mechanism that poses a particular
constraint on the performance of PRM. We can see that imputed densities are very
close to the population densities, although some larger values are imputed for some
variables. This is due to the nature of the missingness and the bivariate approach that
is used in PRM.

5.4.5 Convergence of the algorithm

Figure 5.6 displays the means and the standard deviation for the multiple imputation
chains. It seems that the algorithm converges within a couple of iterations. When
viewed over 100 iterations, the plot does not show a clear trend at the final iteration.
Occasionally, one of the multiple imputation chains yields higher mean and standard
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Fig. 5.6. Plots for the mean and standard deviation for nested sums a, g, h and e over 100
iterations. The different colors represent the m = 5 multiple imputation chains

deviation than the other chains, indicating that at least one larger value is imputed in
the respective variable at that particular iteration. This occurs mainly in the variables
that contribute less to the compositional sum.

5.5 Conclusion

We introduced and evaluated PRM, a bivariate imputation approach for nested com-
positional data. PRM emerges as a very effective imputation approach for nested
compositional data and can handle the skewed semicontinuous variables in the simu-
lation dataset.

PRM requires the top level sum to be observed. In case of an incomplete top level
sum, standard imputation approaches could be used to first impute plausible values
for the incomplete top level sum. Naturally, such imputations need to obey any edit
restrictions associated with that particular sum.

As an alternative to the proposed donor selection, the ratio xj/xj′ could be used,
but this poses practical problems with regard to symmetry. For example, ratio xj/xj′

has a different relation with X−jj′ than ratio xj′/xj , whereas the proposed πjj′ and
1− πjj′ have an equal relation with X−jj′ , albeit of opposite sign.

Imputations generated by PRM will take edit restrictions associated with each sep-
arate composition into account while ensuring that imputations simultaneously obey
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the overall nested compositional structure of the data. Imputing the ratios addresses
the problem of incomplete compositional data out of the simplex space. This is very
convenient and allows for (large amounts of) zeros in the data, without the need for
any transformations or a post-hoc fix. Further, because of the hot deck nature of the
method, no specific distributional assumptions have to be made. Finally, the proposed
PRM method leaves the observed data values and ratios between components intact.

A comparison between imputation approaches for single compositions remains
topic for future research, but is beyond the scope of this research.





Part III

Pooling imputations





6

Pooling multiple imputations when the sample
happens to be the population

Summary. Current pooling rules for multiply imputed data assume infinite populations.
In some situations this assumption is not feasible as every unit in the population has been
observed, potentially leading to over-covered population estimates. We simplify the existing
pooling rules for situations where the sampling variance is not of interest. We compare
these rules to the conventional pooling rules and demonstrate their use in a situation where
there is no sampling variance. Using the standard pooling rules in situations where sampling
variance should not be considered, leads to overestimation of the variance of the estimates of
interest, especially when the amount of missingness is not very large. As a result, populations
estimates are over-covered, which may lead to a loss of statistical power. We conclude that
the theory of multiple imputation can be extended to the situation where the sample happens
to be the population. The simplified pooling rules can be easily implemented to obtain valid
inference in cases where we have observed essentially all units and in simulation studies
addressing the missingness mechanism only.

6.1 Background

Missing data are an ubiquitous problem in medical research. The occurrence of missing
data often has an influence on the precision of estimates and may even lead to biased
estimates and incorrect statistical inferences. A straightforward approach to obtain
valid inference on incomplete data is multiple imputation. With multiple imputation
the missing data problem is solved before the analysis takes place and each missing
value is imputed m ≥ 2 times, leading to m completed datasets. These m completed
datasets are then analyzed separately and their complete data estimates are combined
using Rubin’s rules (Rubin, 1987).

This chapter is published as Vink, G., & van Buuren, S. (2014). Pooling multiple impu-
tations when the sample happens to be the population. arXiv preprint arXiv:1409.8542.
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Current methodology on pooling estimates based on multiply imputed data as-
sumes the data are sampled from infinite populations. In some cases we have data on
all units, e.g. rare conditions in medical research and registers in official statistics, and
sampling variation plays no role. Yet, even though all units are observed, there may be
missing data that affect the precision of the estimates of interest. In such situations,
assuming an infinite population may overestimate the variance of the estimates. As
a result, confidence intervals are longer than needed, leading to a loss of statistical
efficiency.

This note suggests the use of simplified pooling rules that only account for the
variation caused by the mechanism that created the missing data.

Methods

Rubin (1987, p. 76) defined Q as the quantity of interest (possibly a vector) and U as
its variance. With multiple imputation, m complete data estimates can be averaged
as

Q̄ =
1

m

m∑
l=1

Q̂l (6.1)

where Q̂l is an estimate of Q from the l-th imputed data set. Let Ūl be the estimated
variance-covariance matrix of Q̂l. The complete data variances of Q can be combined
by

Ū =
1

m

m∑
l=1

Ūl. (6.2)

The variance between the complete data estimates can be calculated as

B =
1

m− 1

m∑
l=1

(Q̂l − Q̄)′(Q̂l − Q̄). (6.3)

The total variance of (Q− Q̄) is defined as

T = Ū +B +B/m. (6.4)

For populations for which all units are recorded, the average complete data variance
Ū of Q equals zero - there is no sampling variation - and the total variance of (Q− Q̄)
simplifies to

T = B +B/m. (6.5)

As a consequence, the relative increase in variance due to nonresponse equals

r = (1 +m−1)B/Ū =∞, (6.6)

and the degrees of freedom ν can be set to

ν = (m− 1)(1 + r−1)2 = m− 1. (6.7)
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Simulation

We created a finite population with N = 1000 members by drawing 1000 independent
realizations from the multivariate normal distribution with means

µ =

X 1
Y1 2
Y2 3

, (6.8)

and covariance structure

Σ =


X Y1 Y2

X 1 0.1 0.1
Y1 0.1 1 0.1
Y2 0.1 0.1 1

, (6.9)

where X is a completely observed covariate and Y1 and Y2 are made incomplete by
randomly deleting values with probabilities that vary between 0.1 and 0.95.

Data imputations are performed with mice (Van Buuren and Groothuis-Oudshoorn,
2011, version 2.21) in R (R Core Team, 2013, version 3.0.2) with Bayesian linear re-
gression imputation (mice.impute.norm) as the imputation method and 10 iterations
for the algorithm to converge. The quantities of scientific interest were the means of
Y1 and Y2. The true values were calculated as the sample means before deletion.

Results

The results over 10000 simulations are shown in Table 6.1. It is clear that excluding
the sampling variation in Ū from the confidence interval calculation leads to proper
coverage of the 95% confidence interval of the mean. Taking Ū into account when
considering completely observed populations, leads to overcoverage. Not surprisingly,
this overcoverage becomes less apparent when the fraction of information missing due
to nonresponse approaches 1.

With increasing missingness, the role of the between variance B in the total vari-
ance T in Rubin’s rules becomes increasingly more important and the relative contri-
bution of Ū in T decreases. Due to the increase in r, the resulting degrees of freedom
ν approach m − 1. Eventually, when all data are missing, sampling variation Ū dis-
appears and both pooling approaches become equivalent (see Figure 6.1).

All estimates are unbiased. As expected, the conventional pooling rules overes-
timate the total variance in the datasets covering the entire population, leading to
overcoverage (c.f. Table 6.1). In contrast, the simplified pooling rules yield consistently
a coverage of 95% of the 95 percent confidence interval.
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Conclusions

This note illustrates that sharper inferences are possible in situations where the entire
population has been observed, and all variation stems for the missing data. Our
simulations show that the simplified pooling rules yield variance-covariance estimates
that lead to shorter confidence intervals with correct statistical properties.

Although the adaptation to the conventional pooling rules is small (and may be
considered mathematically trivial), we are not aware of any work actually applying
simplified pooling. There are several instances where the simplified rules may be of
practical interest. First, in situations where essentially all units are observed but
missingness has its influence on the precision of estimates, multiple imputation can
be utilized to obtain sharper inferences when the proposed pooling rules are used to
obtain inference. Such applications can be found throughout many scientific fields,
such as medicinal sciences, official statistics and big data applications.

Another useful application can be found in simulation studies involving the eval-
uation of imputation approaches. For the last decades, sampling variation has been
an essential part of the evaluation of multiple imputation approaches. When infi-

Table 6.1. Coverage of the mean. Average results over 10,000 simulations for two vari-
ables with varying percentage of missingness. Results are shown for pooling rules for finite
populations (simplified rules) and for the pooling rules as defined by Rubin (conventional
rules).

conventional rules simplified rules
%mis r ν fmi ciw cov r ν ciw cov

Y1

10 0.13 330.36∗ 0.12 0.13 1.000 ∞ 4 0.06 0.949
20 0.30 775.54 0.23 0.14 1.000 ∞ 4 0.09 0.950
30 0.51 401.36 0.33 0.15 0.999 ∞ 4 0.11 0.950
40 0.80 400.58 0.44 0.17 0.994 ∞ 4 0.14 0.951
50 1.20 57.82 0.53 0.19 0.988 ∞ 4 0.18 0.951
60 1.81 31.55 0.62 0.23 0.976 ∞ 4 0.22 0.950
70 2.82 20.48 0.71 0.27 0.969 ∞ 4 0.27 0.953
80 4.78 14.18 0.80 0.35 0.958 ∞ 4 0.35 0.952
90 10.84 6.30 0.89 0.53 0.950 ∞ 4 0.54 0.951
95 22.79 5.44 0.94 0.79 0.948 ∞ 4 0.80 0.951

Y2

10 0.13 6483.96 0.12 0.14 1.000 ∞ 4 0.06 0.948
20 0.29 1028.42 0.23 0.15 1.000 ∞ 4 0.09 0.950
30 0.50 261.06 0.33 0.16 0.999 ∞ 4 0.12 0.948
40 0.78 167.69 0.43 0.18 0.995 ∞ 4 0.15 0.949
50 1.17 90.94 0.52 0.20 0.988 ∞ 4 0.18 0.951
60 1.78 68.54 0.62 0.24 0.978 ∞ 4 0.23 0.949
70 2.72 19.66 0.70 0.29 0.966 ∞ 4 0.28 0.949
80 4.71 11.71 0.80 0.37 0.960 ∞ 4 0.37 0.951
90 10.61 8.24 0.89 0.56 0.949 ∞ 4 0.57 0.949
95 22.40 5.23 0.94 0.83 0.944 ∞ 4 0.84 0.947

∗ Calculated cf. Barnard and Rubin (1999) because occasionally r ≈ 0.
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Fig. 6.1. Simplified and conventional pooling rules compared. Displayed are coverage rates
for different missingness rates when assuming finite (simplified rules) or infinite (conventional
rules) populations.

nite populations cannot be assumed during such evaluations, design-based simulation
strategies are often used to properly account for sampling variation. However, in order
to obtain information about a method’s ability to handle the missing data problem,
or to objectively compare methods on their ability to correct for missingness, it is
not necessary to take sampling variation into account. After all, we are interested
only in the missing data mechanism, and are not considering the noise induced by
the sampling mechanism for evaluation in such studies. Moreover, not having to con-
sider the sampling mechanism makes the generation of simulation data much more
straightforward, especially when generating intricate multivariate data structures.
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Mart́ın-Fernández, J., Barceló-Vidal, C., and Pawlowsky-Glahn, V. (2003). Dealing
with zeros and missing values in compositional data sets using nonparametric im-
putation. Mathematical Geology, 35(3):253–278.

Morris, T. P., White, I. R., and Royston, P. (2014). Tuning multiple imputation
by predictive mean matching and local residual draws. BMC Medical Research
Methodology, 14(1):75.

Olkin, I. and Tate, R. (1961). Multivariate correlation models with mixed discrete
and continuous variables. The Annals of Mathematical Statistics, 32(2):448–465.

Olsen, M. and Schafer, J. (2001). A two-part random-effects model for semicontinuous
longitudinal data. Journal of the American Statistical Association, 96(454):730–745.

Oudshoorn, C. G. M., Buuren, S., and Rijckevorsel, J. L. A. (1999). Flexible multiple
imputation by chained equations of the AVO-95 survey. TNO Prevention and Health
Leiden.

Palarea-Albaladejo, J., Mart́ın-Fernández, J., and Gómez-Garćıa, J. (2007). A para-
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Samenvatting

Ontbrekende data vormen een alomtegenwoordig probleem waar de meeste weten-
schappers of onderzoekers vroeg of laat mee te maken krijgen. Een goed voorbeeld
kan men vinden in onderzoek waar men gebruik maakt van vragenlijsten. Niet zelden
slaan deelnemers aan dergelijke onderzoeken één of meerdere vragen over, met als
resultaat dat de data niet compleet geobserveerd zijn. Dit vormt een probleem omdat
de meeste statistische analyses veronderstellen dat de data compleet zijn.

Een veelgebruikte ad hoc oplossing voor het analyseren van incomplete data ligt
in het negeren van de ontbrekende data. Echter, ontbrekende waarden kunnen niet
zonder meer worden genegeerd. Immers, berekeningen op de geobserveerde data alleen
kunnen een vertekend beeld geven wanneer er een reden is voor het ontbreken van
(delen van) de data. Zelfs als er geen reden zou zijn voor het ontbreken van bepaalde
waarden, resulteert een analyse van de geobserveerde data in een lager aantal respon-
denten dat gebruikt kan worden. Als gevolg hiervan is er een lagere kans op het vinden
van een onderzoekseffect wanneer dit effect aanwezig is (statistische power) en zijn
standaardfouten vertekend. Met andere woorden, de significantieniveaus (p-waarden)
die gemeengoed zijn in wetenschappelijk onderzoek en de achterliggende conclusies
zijn in essentie fout wanneer men de ontbrekende data simpelweg negeert.

Om incomplete data op een juiste manier te kunnen analyseren, zijn er twee al-
gemeen geaccepteerde mogelijkheden. De eerste oplossing ligt in analyses die gebruik
maken van schattingsmethoden die met ontbrekende data kunnen omgaan. Hierbij
kan worden gedacht aan technieken zoals maximum likelihood, wegen en volledige
Bayesiaanse schattingstechnieken. Het incomplete data probleem wordt hierbij ‘opge-
lost’ tijdens de analyse. Men kan echter ook het analyseproces en het probleem van
ontbrekende data loskoppelen. Dit wordt gedaan in wat men imputatie noemt. Ont-
brekende waarden worden gëımputeerd (ingevuld) en de gecompleteerde dataset kan
vervolgens worden geanalyseerd met behulp van standaard analysetechnieken.

Wanneer men de ontbrekende data slechts eenmaal zou imputeren, wordt de on-
zekerheid rond de invullingen niet in de gëımputeerde data weerspiegeld en dienen er
specifieke methoden voor het schatten van de standaardfouten te worden gebruikt.
Een meer flexibele techniek om de onzekerheid omtrent de ingevulde waarden mee te
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nemen is multiple imputation (MI). Met MI wordt iedere ontbrekende waarde m ≥ 2
maal ingevuld om zo m gecompleteerde datasets te verkrijgen. Ten minste twee im-
putaties zijn nodig om de onzekerheid omtrent de invullingen te beschouwen, maar
doorgaans is het aan te raden om een groter aantal imputaties te kiezen. De m datasets
kunnen vervolgens worden geanalyseerd als ware het compleet geobserveerde datasets
en de m analyseresultaten kunnen worden samengevat in één enkele gevolgtrekking.

In dit proefschrift worden enkel op MI gebaseerde methoden behandeld. De keuze
voor MI is gebaseerd op de volgende argumenten. Ten eerste, MI wordt in toenemende
mate meer populair en is zonder twijfel één van de meest gebruikte methoden voor
het omgaan met nonrespons. Het aantal boeken en conferenties waarin MI wordt
beschouwd neemt dan ook snel toe. Een mogelijke verklaring voor de populariteit
van MI is de relatieve eenvoud waarmee conclusies op basis van MI kunnen worden
verkregen en kunnen worden uitgelegd. Dit zijn aantrekkelijke eigenschappen die in
het bijzonder toegepaste onderzoekers zullen aanspreken.

Een tweede reden om te kiezen voor MI heeft te maken met de toenemende com-
plexiteit van methoden die de ontbrekende data meenemen in het schattingsproces
wanneer het modelleren van de data een grotere uitdaging vormt. Men kan bijvoor-
beeld denken aan grote hoeveelheden variabelen of complexe univariate of zelfs multi-
variate verdelingen. In het geval van MI hebben dergelijke ingewikkeldheden voorna-
melijk betrekking op het imputatiestadium en blijft de analyse relatief eenvoudig. Met
andere woorden: zodra plausibele invullingen verkregen zijn is het niet al te moeilijk
om een antwoord te vinden op de onderzoeksvraag.

Dit proefschrift richt zich op het vinden van invullingen die plausibel kunnen wor-
den geacht. Plausibele imputaties zijn invullingen die echte waarden zouden kunnen
zijn geweest wanneer ze wél waren geobserveerd. Deze definitie van plausibiliteit richt
zich op de positie van de gëımputeerde waarden, gegeven de rest van de data. In
reguliere datasets houdt dit in dat invullingen moeten passen binnen de incomplete
variabele (de kolom) en de overige metingen voor de respondent (de rij). Met andere
woorden: plausibiliteit omvat niet alleen de gëımputeerde waarde, maar ook het ver-
band van de imputatie met andere (geobserveerde en gëımputeerde waarden in de
data. Een eenvoudig voorbeeld vindt men in variabelen die gezamenlijk optellen tot
een totaal. Enkel die imputaties die de somstructuur intact laten kunnen als plausibel
worden beschouwd.

Het vinden van plausibele imputaties wanneer de data aan bepaalde restricties
onderhevig zijn is lastig. De restricties die gelden voor de data zijn immers ook van
toepassing op het model dat wordt gebruikt om de imputaties te genereren. De hui-
dige imputatie methoden leiden niet tot imputaties die naar tevredenheid plausibel
kunnen worden geacht. In dit proefschrift worden imputatiemethoden voorgesteld die
leiden tot plausibele invullingen voor situaties waarin de huidige imputatiemethoden
te kort schieten. De behandelde onderzoekssituaties en restricties komen veelvuldig
voor binnen onderzoeksdomeinen waarin de statistiek een prominente rol inneemt,
zoals officile statistiek, sociale wetenschappen, geologie en de geneeskunde.

In hoofdstuk 2 wordt gedemonstreerd hoe op een efficiënte wijze plausibele im-
putaties kunnen worden verkregen voor verdelingen waarvan een groot gedeelte van
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de observaties één waarde aanneemt (meestal nul), maar de overige waarden conti-
nue zijn verdeeld. Huidige methoden voor het imputeren van dergelijke variabelen
bevatten meerdere stappen, dikwijls afhankelijk van vooraf getransformeerde data en
zijn in veel gevallen verminderd efficient. De voorgestelde methode bevat slechts één
enkele stap, waarbij er geen noodzaak is tot het transformeren van de data om tot
plausibele imputaties en valide gevolgtrekkingen te komen.

Hoofdstuk 3 laat zien hoe incomplete multilevel data op een plausibele wijze kun-
nen worden gëımputeerd. Multilevel data hebben als eigenschap dat respondenten
gezamenlijke karakteristieken delen en op basis van deze karakteristieken gegroepeerd
kunnen worden in clusters (ook wel: klassen). Indien de clusterstructuur tijdens het
imputatieproces wordt genegeerd, zullen de gëımputeerde waarden niet voldoen aan
de structuur die op de geobserveerde data van toepassing is. De structuur zal hierdoor
afzwakken en de analyses op basis van de gecompleteerde data kunnen sterk verte-
kende resultaten laten zien. Er wordt gedemonstreerd hoe men op een relatief eenvou-
dige wijze de clusterstructuur kan meenemen in het imputatieproces. Ook wordt er
in Hoofdstuk 3 een vergelijking gemaakt tussen de voorgestelde methode en reeds be-
staande imputatiemethoden, waaronder methoden die specifiek zijn ontwikkeld voor
het imputeren van multilevel data.

Veel toegepaste onderzoekers gebruiken gekwadrateerde termen in hun analysemo-
dellen. Het is algemeen bekend dat het model dat gebruikt wordt voor het verkrijgen
van de imputaties tenminste alle relaties moet omvatten die van wetenschappelijk
belang zijn. Dit houdt in dat voor iedere gekwadrateerde term, zowel het kwadraat
als de originele variabele in het imputatiemodel meegenomen moeten worden. Bij het
genereren van plausibele imputaties dient vervolgens het verband tussen de originele
variabele en het kwadraat van deze variabele bewaard te blijven. Een gekwadrateerde
waarde die geen enkele relatie heeft tot haar wortel kan immers niet plausibel worden
geacht. In Hoofdstuk 4 wordt uiteengezet hoe plausibele imputaties kunnen worden
verkregen wanneer gekwadrateerde termen onderdeel uitmaken van het imputatiemo-
del.

Binnen veel domeinen van wetenschap wordt data verzameld die onderhevig zijn
aan een bepaalde compositionele structuur. Compositionele data kunnen worden om-
schreven als een set van delen die optellen naar een totaal. Het imputeren van compo-
sitionele data vormt een uitdaging omdat de invullingen dienen te gehoorzamen aan
de vereiste structuur, maar strikt niet-negatief dienen te zijn. Hoofdstuk 5 introdu-
ceert een imputatieaanpak die om kan gaan met ingewikkeld gelaagde compositionele
structuren en resulteert in plausibele imputaties die vasthouden aan de structuur van
de data.

Het laatste hoofdstuk behandelt een nieuwe aanpak voor het samenvoegen van de
verschillende analyses to één enkele gevolgtrekking. Deze aanpak is in het bijzonder
aantrekkelijk voor onderzoeksdoeleinden waarin computersimulaties worden gedraaid.
In simulatieonderzoek wordt doorgaans een steekproef getrokken uit een theoretische
verdeling die dienst doet als de populatie. Wanneer er geen theoretische verdeling
mogelijk is, kiest men voor een ‘design-based’ simulatieaanpak waarin een steekproef
wordt getrokken uit een echte, geobserveerde dataset die groot genoeg wordt geacht.
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Beide simulatieaanpakken introduceren steekproefvariantie in het onderzoek. Deze
vorm van variantie is echter niet specifiek interessant wanneer het evalueren van im-
putatiemethoden het doel van de simulatiestudie is. Hoofdstuk 6 demonstreert daarom
een vereenvoudiging van de gebruikelijke regels voor het samenvoegen van analyse-
resultaten voor situaties waarin de steekproefvariantie niet interessant is. Er wordt
aangetoond dat de vereenvoudigde regels ook dienen te worden gebruikt in situaties
waarin de grootte van de populatie een restrictie vormt en in essentie alle eenheden
in de populatie zijn geobserveerd.
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