
1 Imputation strategies for multivariate data

Multiple imputation for multivariate data comes in two main flavors: joint mod-
eling (JM) and fully conditional specification (FCS). With JM, imputations are
drawn from an assumed joint multivariate distribution. Often a multivariate
normal model is used for both continuous and categorical data, although other
joint models have been proposed (see e.g. Olkin and Tate, 1961; Van Buuren
and van Rijckevorsel, 1992; Schafer, 1997; Van Ginkel et al., 2007; Goldstein
et al., 2009; Chen et al., 2011). Joint modeling imputations generated under
the normal model are usually robust to misspecification of the imputation model
(Schafer, 1997; Demirtas et al., 2008), although transformation towards normal-
ity is generally beneficial.

Contrary to JM, multiple imputation by means of FCS does not start from an
explicit multivariate model. With FCS, multivariate missing data is imputed
by univariately specifying an imputation model for each incomplete variable,
conditional on a set of other (possibly incomplete) variables. The multivariate
distribution for the data is thereby implicitly specified through the univariate
conditional densities and imputations are obtained by iterating over the condi-
tionally specified imputation models.

The general idea of using conditionally specified models to deal with miss-
ing data has been discussed and applied by many authors (see e.g. Kennickell,
1991; Raghunathan and Siscovick, 1996; Oudshoorn et al., 1999; Brand, 1999;
Van Buuren et al., 1999; Van Buuren and Oudshoorn, 2000; Raghunathan et al.,
2001; Faris et al., 2002; Van Buuren et al., 2006). Comparisons between JM and
FCS have been made that indicate that FCS is a useful and flexible alternative
to JM when the joint distribution of the data is not easily specified (Van Bu-
uren, 2007) and that similar results may be expected from both imputation
approaches (Lee and Carlin, 2010).

In this dissertation, new methodology based on FCS is introduced, although
comparisons are occasionally made to imputation approaches that utilize some
form of joint modeling. The choice for FCS is based on applicability, by avoid-
ing the complex specification and estimation of multivariate models that ob-
serve different kinds of restrictions. Because the multidimensional imputation
problem is split in multiple unidimensional imputation problems, it is relatively
simple to specify imputation models that do not conform to standard multivari-
ate distributions. Moreover, this flexibility in specifying univariate imputation
models makes it much easier to adapt imputation models to accommodate for
some form of restriction. As a result, the incomplete data can be more effi-
ciently addressed and unique data features can be preserved. For example, in
official statistics many restrictions are posed on survey or register data, such as
bounds (no unrealistic human age), strict non-negativity (no negative incomes)
and conditional restrictions (girls under twelve years of age are not allowed to
have children, nor can they be married).

2 Current modeling practice

A straightforward implementation of FCS (for more detail on FCS, see Section
1) can be found in the MICE algorithm proposed by Van Buuren and Groothuis-
Oudshoorn (2000, 2011). The MICE algorithm is a Markov Chain Monte Carlo
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(MCMC) method, which becomes a Gibbs sampler in situations where the con-
ditional densities are said to be compatible. Compatibility is reached when the
joint multivariate distribution has the separate conditional distributions as its
conditional densities. For the MICE algorithm, the joint distribution is only im-
plicitly known and compatibility may be difficult to prove. In some situations,
compatibility may not actually exists. However, in practice FCS seems to be
robust when compatibility conditions are not met (Van Buuren et al., 2006).
Recently, Bartlett et al. (2014) introduced a substantive model compatible FCS
(SMC-FCS) that ensures that each covariate is imputed from a model which
is compatible with the substantive model. This may be particularly of interest
when the substantive analysis model contains non-linearities or interactions.

The MICE algorithm starts with randomly drawing imputations from the
observed data. Subsequently, the variables are imputed in a variable-by-variable
approach. A single iteration of the algorithm cycles through all incomplete
variables.

The number of iterations for the MICE algorithm has to be carefully chosen.
In most situations, a low number of iterations appears to be enough (Brand,
1999; Van Buuren et al., 1999), but slow convergence can occur if, for example,
the amount of missing data is large or if there is high autocorrelation in the
imputation chains. After imputation, convergence of the m multiple imputation
chains should be investigated.

The number of imputations is also of importance when doing multiple im-
putation. Usually, the default amount of imputations in software is set to be
as low as three to five. Many authors have investigated the role of m with
regard to several criteria, such as the confidence interval, statistical power and
the proportion of missingness attributable to the nonresponse (see e.g. Roys-
ton, 2004; Graham et al., 2007; Bodner, 2008; White et al., 2011). The work
by these authors suggests that it may often be beneficial to set the amount of
imputations much larger, although it comes at a cost in terms of data storage
and computational time.

In general it holds that using a higher m is always better. This does not
necessarily mean that outcomes from resulting analyses will be better. In fact,
Schafer (1997) suggests that resources can often be better spent and Schafer
and Olsen (1998) indicate that in most situations there is only little advantage
to analyzing more than a few imputed datasets. To save computation time
and resources, Van Buuren (2012) suggests to set m = 5 during model building
and to increase m only for the ‘actual’ imputation stage. However, with com-
puters becoming increasingly faster and data storage solutions becoming more
accommodative of large datasets, one can imagine that today’s drawbacks in
performing more imputations are becoming increasingly less important in the
future.
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