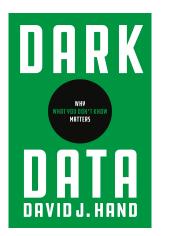
Multiple Imputation in Practice (MIMP) S28 https://www.gerkovink.com/mimp Stef van Buuren, Gerko Vink July 11-14, 2022	Welcome	Course links Summer School MIMP
 Our teaching staff Stef van Buuren Gerko Vink Thom Volker Hanne Oberman Mingyang Cai 	Overview	 Why this course? Missing data are everywhere Ad-hoc fixes do not (always) work Multiple imputation is broadly applicable, yield correct statistical inferences, and there is good software Goal: Get comfortable with a powerful way of solving missing data problems We use the mice package in R
 Van Buuren, S. and Groothuis-Oudshoorn, C.G.M. (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3), 1–67. https://www.jstatsoft.org/article/view/v045i03 Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman & Hall/CRC, Boca Raton, FL. Free text: https://tefvanbuuren.name/fimd Order book: https://www.crcpress.com/Flexible-Imputation-of-Missing- Data-Second-Edition/Buuren/p/book/9781138588318 	Chapman & Mal/CRC Interdisciplinary Statistics Series Flexible Imputation of Missing Data SECOND EDITION Stef van Buuren	R • Why R?

R software and examples	Course schedule	Schedule for Monday, Jul 11
 Course site: https://www.gerkovink.com/mimp R install from https://cran.r-project.org R package: mice 3.14.0, https://cran.r-project.org/package=mice Development version: mice 3.14.7, https://github.com/amices/mice Documentation: https://amices.org/mice/ Example code: https://github.com/stefvanbuuren/fimdbook/ blob/master/R/fimd.R 	Day Location Lecture.1 Practical.1 Lecture.2 Practical.2 9am - 10 a3am 10.45am - 12.15pm 1.15pm - 2.30pm 2.45pm - 4pm Monday Atlas A B C D Tuesday Atlas E F G H Wedneday Atlas I J K L Thursday Van Lier M N O P	SlotTypeDescriptionFIMD2ALIntroductionCh1BPAd-hoc methods and micenhanesCLMultiple imputation, UnivariateCh2, 3.1–3.7DPImputation with micenhanes
Schedule for Tuesday, Jul 12	Schedule for Wednesday, Jul 13	Schedule for Thursday, Jul 14
SlotTypeDescriptionFIMD2ELMultivariate imputationCh4,5.6FPMultivariate imputation in Rmammalsleep, boysGLModelling, derived variables6.1-6.4HPImputation derived variablesmammalsleep, boys	SlotTypeDescriptionFIMD2ILCombining inferencesCh5JPAnalysis in RKLSensitivity, reporting3.8, 9.2, 12.2LPApproach to sensitivity analysis1eiden85	SlotTypeDescriptionFIMD2MLAdvanced featuresvariousNPAdvanced features with in miceOLCapita selectaPPGet advice/support
	Overview A	Overview A
Introduction into missing data - MIMP A	 Evolving views on missing data Why are missing data interesting? Terminology and concepts Strategies to deal with missing data 	 Evolving views on missing data Why are missing data interesting? Terminology and concepts Strategies to deal with missing data

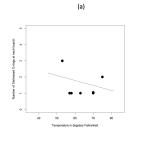
Evolving views on missing data - 1970

"Obviously the best way to treat missing data is not to have them." — Orchard and Woodbury, 1972



Challenger space shuttle - 28 Jan 1986 - 7 deaths

Figure 1.1 (a) Data examined in the pre-launch teleconference; (b) Complete data.



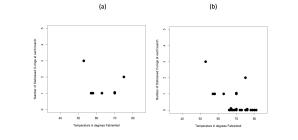
Evolving views on missing data - 2000

"Sooner or later (usually sooner), anyone who does statistical analysis runs into problems with missing data." — Paul Allison, 2002

Challenger space shuttle - 28 Jan 1986 - 7 deaths

Challenger space shuttle - 28 Jan 1986 - 7 deaths

Figure 1.1 (a) Data examined in the pre-launch teleconference; (b) Complete data.

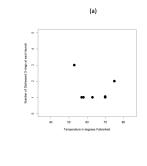


Evolving views on missing data - 2020

"Dark data are concealed from us, and that very fact means we are at risk of misunderstanding, of drawing incorrect conclusions, and of making poor decisions." — David Hand, 2020

Challenger space shuttle - 28 Jan 1986 - 7 deaths

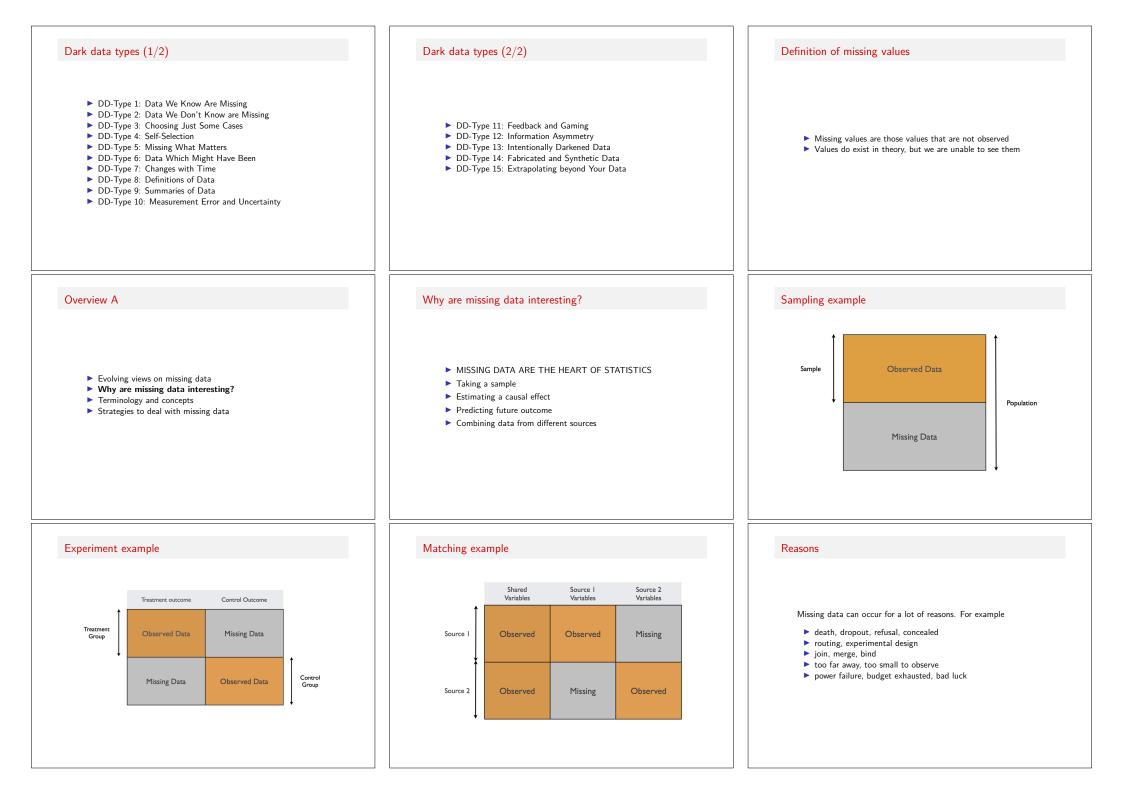
Figure 1.1 (a) Data examined in the pre-launch teleconference; (b) Complete data.

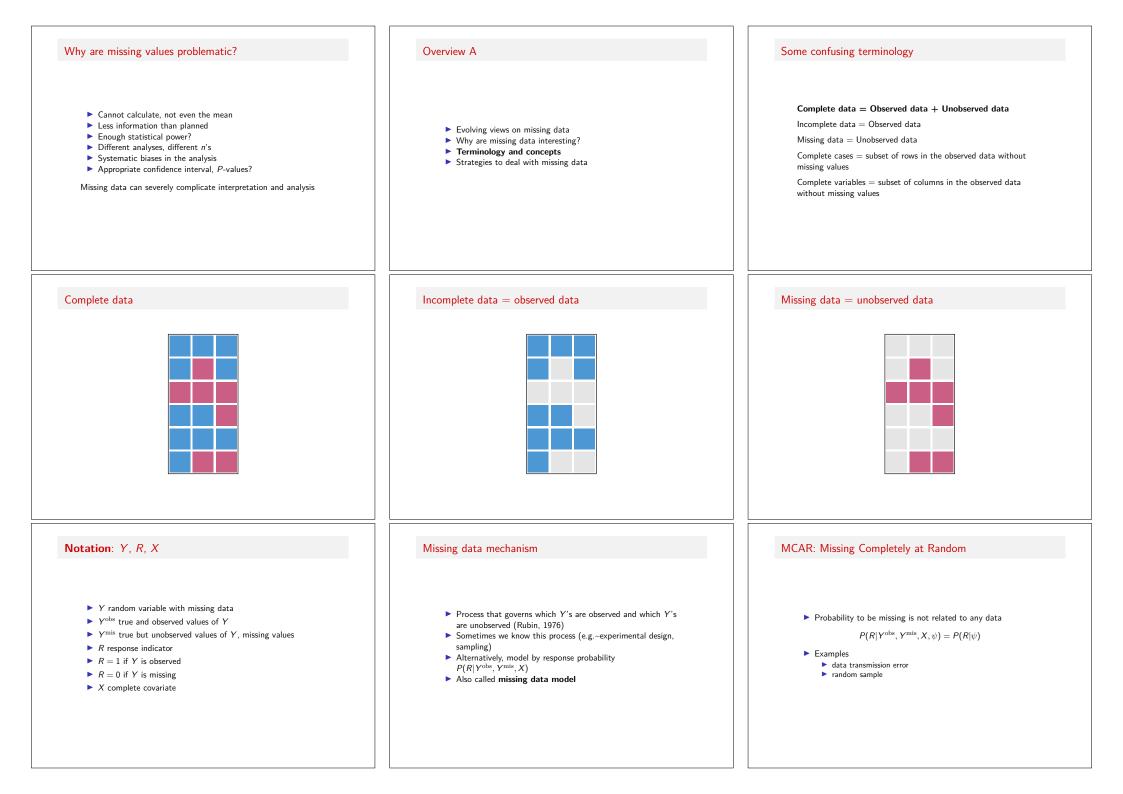


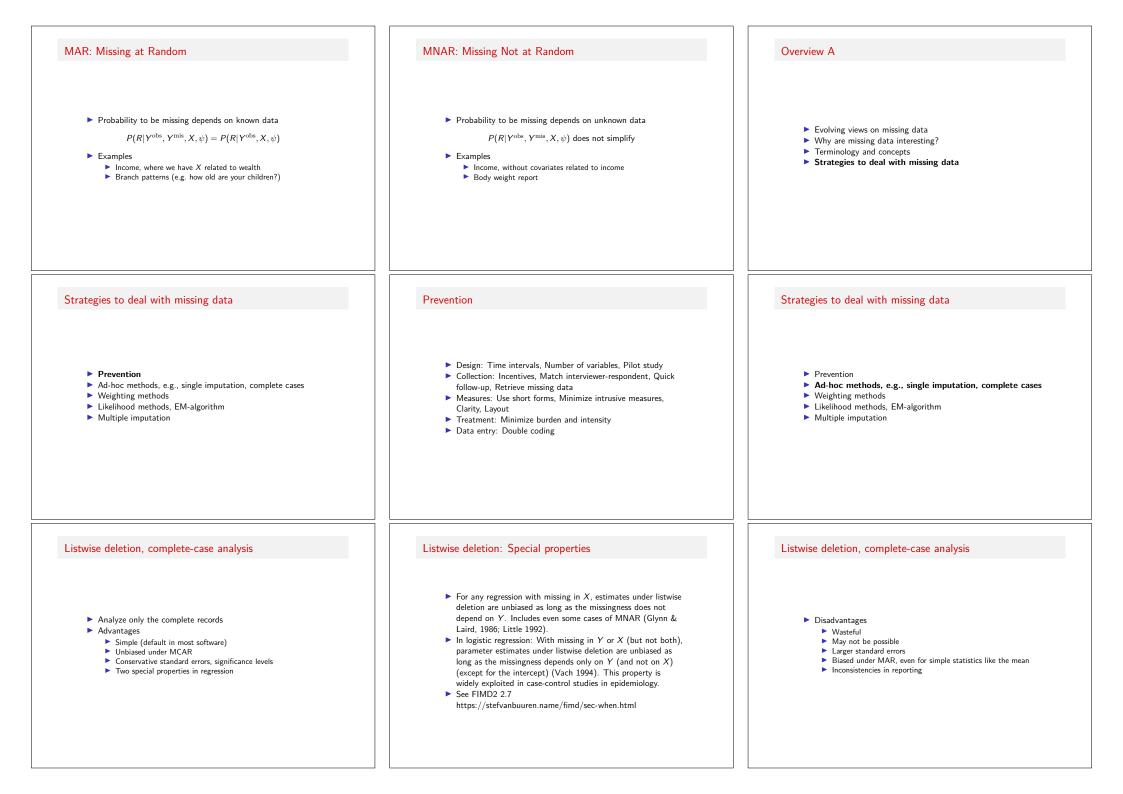
Challenger space shuttle - 28 Jan 1986 - 7 deaths

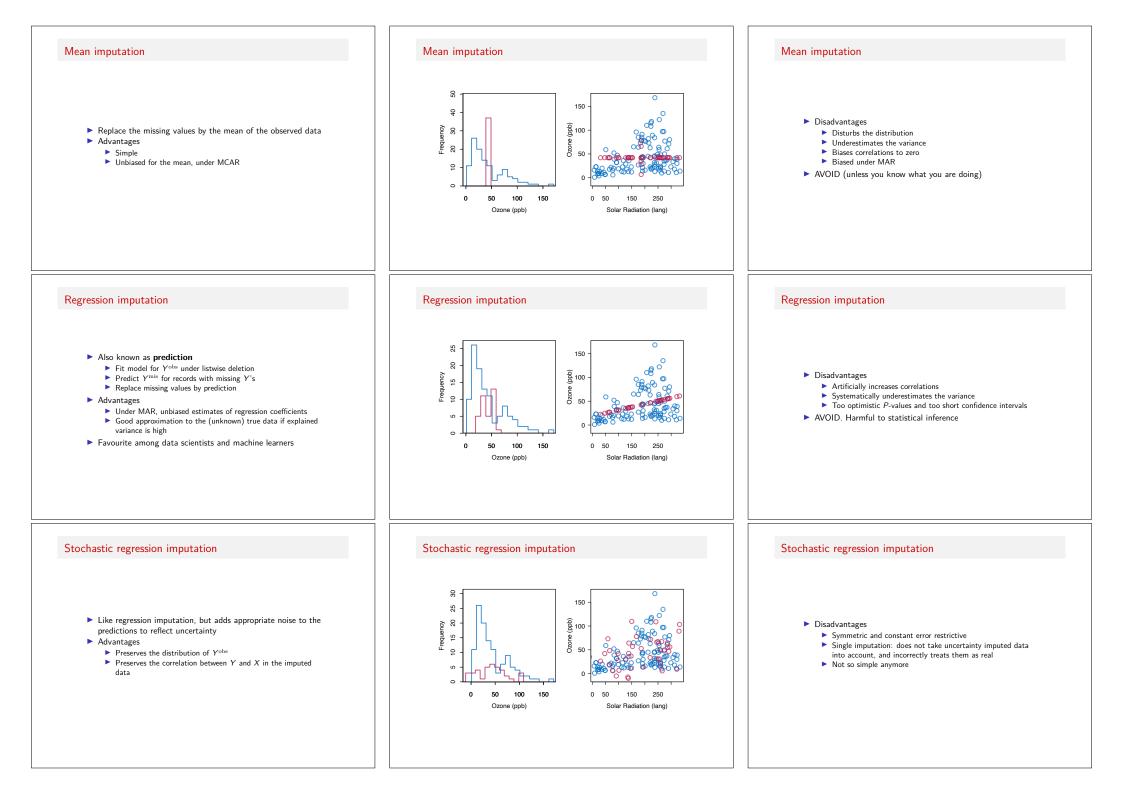
Figure 1.1 (a) Data examined in the pre-launch teleconference; (b) Complete data.

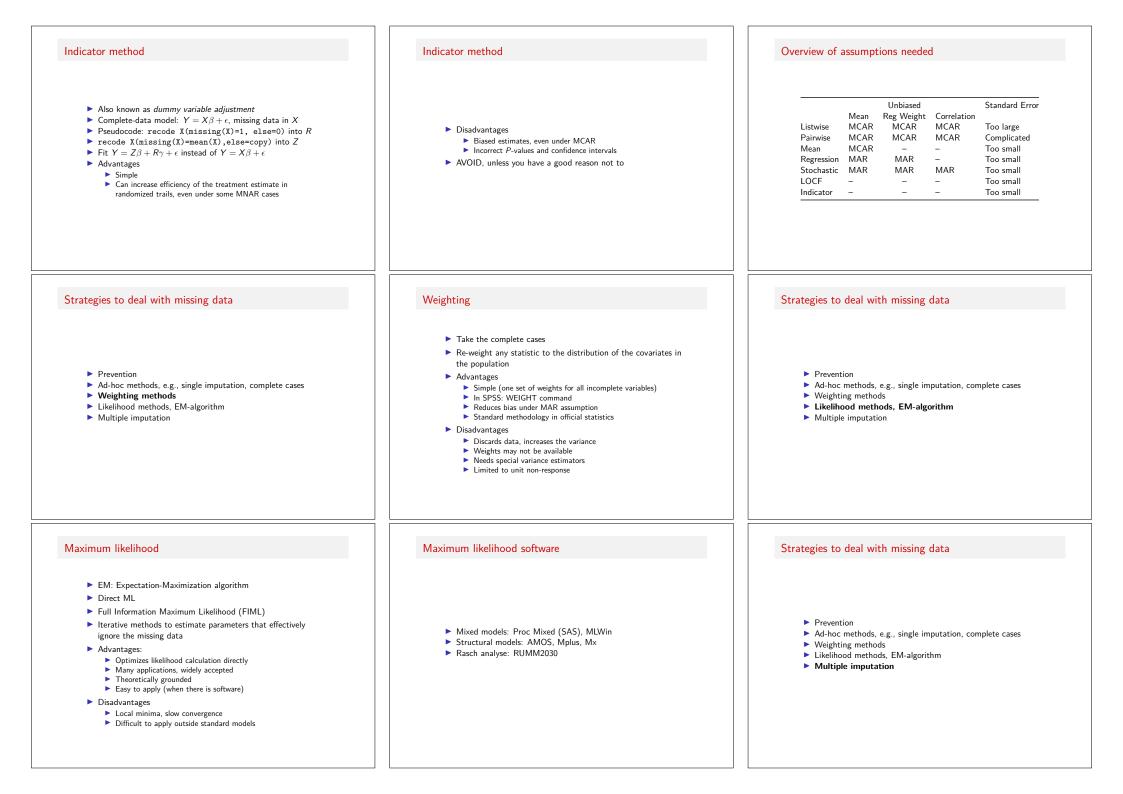
(a) (b)

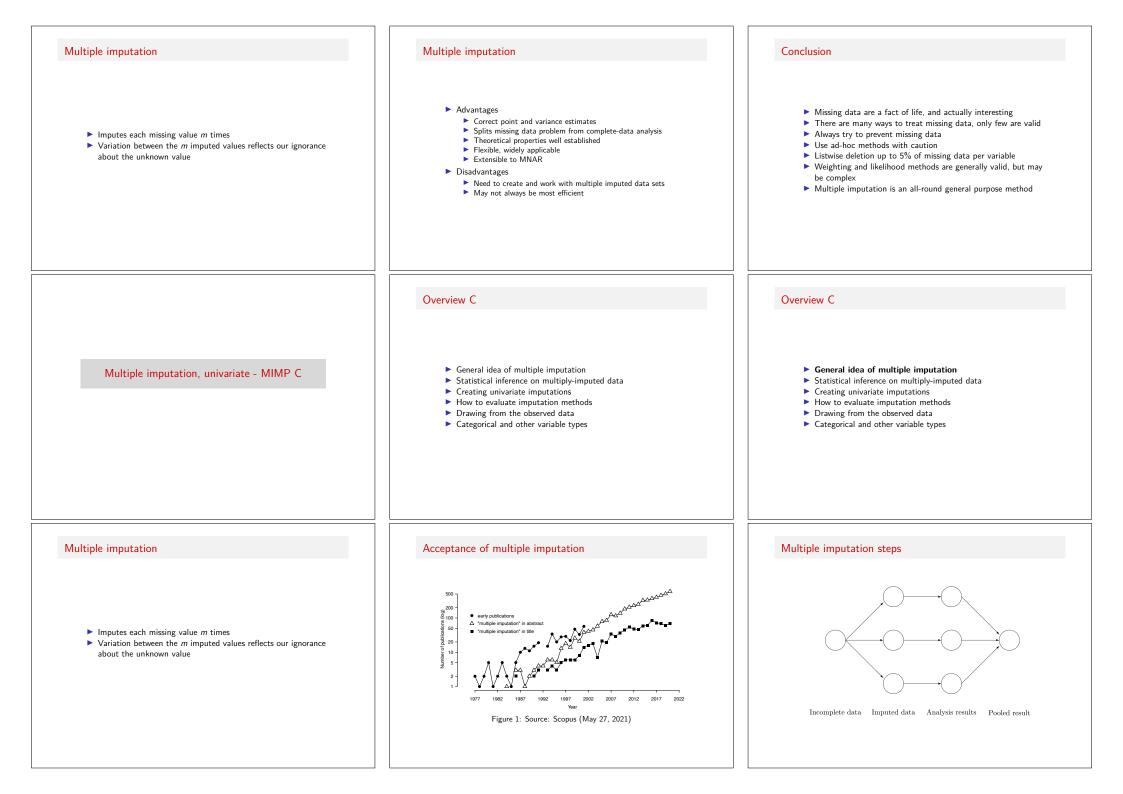


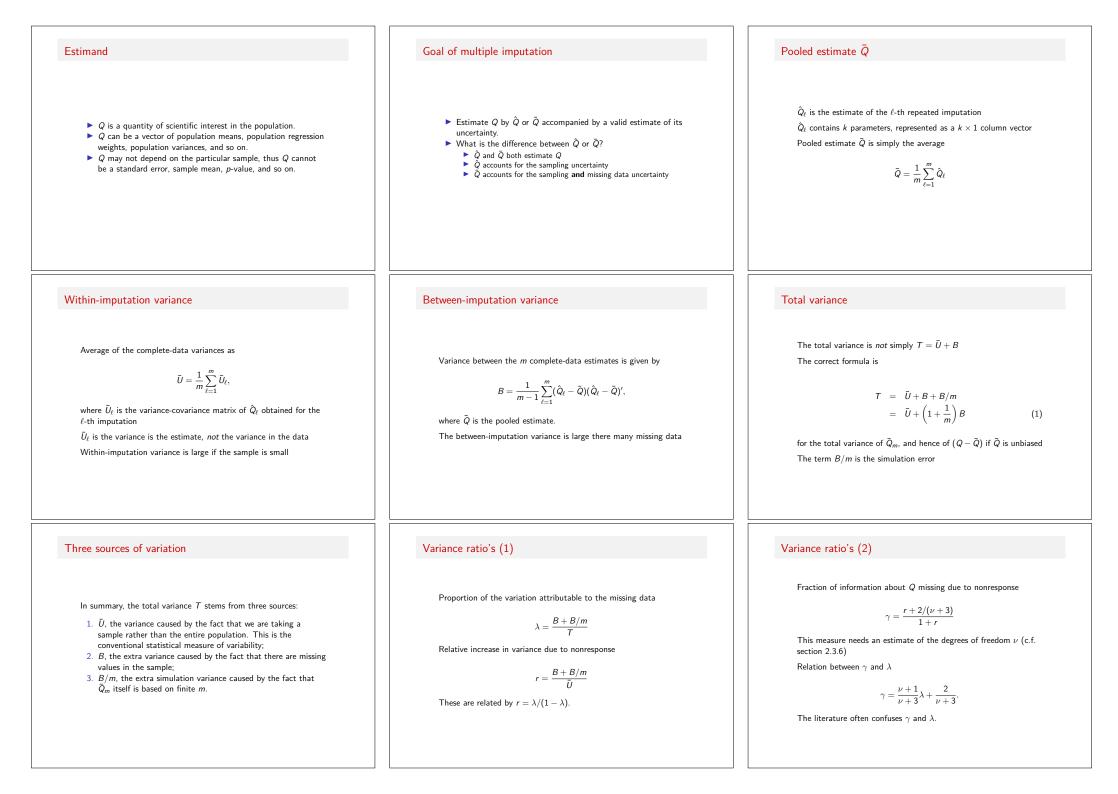












Degrees of freedom (1)

With missing data, n is effectively lower. Thus, the degrees of freedom in statistical tests need to be adjusted.

The $100(1 - \alpha)$ % confidence interval of a \overline{Q} is calculated as

where $t_{(\nu,1-\alpha/2)}$ is the quantile corresponding to probability

For example, use t(10, 0.975) = 2.23 for the 95% confidence

 $\bar{Q} \pm t_{(\nu,1-\alpha/2)}\sqrt{T},$

The *old* formula assumes $n = \infty$:

Statistical inference for $\bar{Q}(1)$

 $1 - \alpha/2 \text{ of } t_{\nu}$.

interval for $\nu = 10$.

$$\nu_{\text{old}} = (m-1)\left(1+\frac{1}{r^2}\right)$$
$$= \frac{m-1}{\lambda^2}$$

(2)

Degrees of freedom (2)

The new formula is

$$u = rac{
u_{
m old}
u_{
m obs}}{
u_{
m old} +
u_{
m obs}}.$$

(3)

where the estimated observed-data degrees of freedom that accounts for the missing information is

$$\nu_{\rm obs} = \frac{\nu_{\rm com} + 1}{\nu_{\rm com} + 3} \nu_{\rm com} (1 - \lambda). \tag{4}$$

with $\nu_{\rm com} = n - k$.

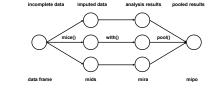
Statistical inference for \bar{Q} (2)

Suppose we test the null hypothesis $Q = Q_0$ for some specified value Q_0 . We can find the *P*-value of the test as the probability

$$P_s = \Pr\left[F_{1,\nu} > \frac{(Q_0 - \bar{Q})^2}{T}\right]$$

where $F_{1,\nu}$ is an F distribution with 1 and ν degrees of freedom.

Multiple imputation in mice



Overview C General idea of multiple imputation Statistical inference on multiply-imputed data Creating univariate imputations How to evaluate imputation methods Drawing from the observed data Categorical and other variable types How large should m be? Classic advice: m = 3, 5, 10. More recently: set m higher: 20–100.

Classic advice: m = 3, 5, 10. More recently: set m higher: 20–100. Some advice:

- Use m = 5 or m = 10 if the fraction of missing information is low, $\gamma < 0.2$.
- Develop your model with m = 5. Do final run with m equal to percentage of incomplete cases.

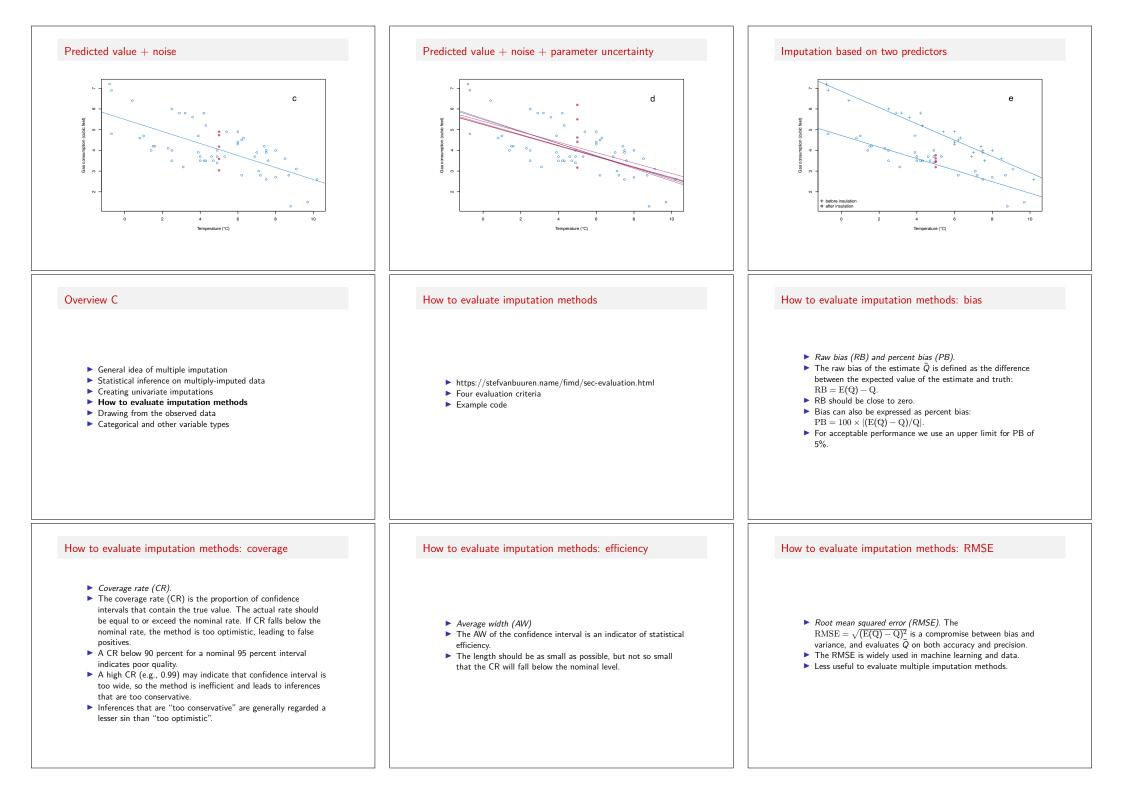
Inspect the data

library("mice")
head(nhanes)

	age	bmi	hyp	chl
1	1	NA	NA	NA
2	2	22.7	1	187
3	1	NA	1	187
4	3	NA	NA	NA
5	1	20.4	1	113
6	3	NA	NA	184

Example of imputation-analysis-pooling steps





What can go wrong with the RMSE?

Suppose we measure the average discrepancy between the true and imputed values by the RMSE:

$$\text{RMSE} = \sqrt{\frac{1}{n_{\text{mis}}} \sum_{i=1}^{n_{\text{mis}}} (y_i^{\text{mis}} - \dot{y}_i)^2}$$
(5)

- Minimizing this criterion alone selects methods that ignore the uncertainty of the prediction.
- Amplifies the relations between the data and leads to too optimistic P-values.
- Except in trivial cases, imputation methods cannot reconstruct the true data!
- Bottom line: Do not use this RMSE

General idea of multiple imputation
 Statistical inference on multiply-imputed data

Creating univariate imputations
 How to evaluate imputation methods
 Drawing from the observed data
 Categorical and other variable types

Overview C

Four techniques for normal data

- 1. Predict: $\dot{y} = \hat{\beta}_0 + X_{\min}\hat{\beta}_1$ (mice.impute.norm.predict()) 2. Predict + noise: $\dot{y} = \hat{\beta}_0 + X_{\min}\hat{\beta}_1 + \dot{\epsilon}$
- (mice.impute.norm.nob())

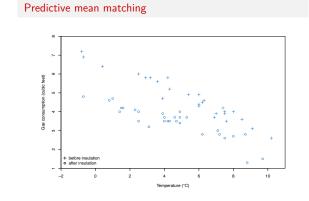
Drawing from the observed data

- 3. Bayesian multiple imputation: $\dot{y} = \dot{\beta}_0 + X_{\rm mis}\dot{\beta}_1 + \dot{\epsilon}$, where $\dot{\beta}_0$, $\dot{\beta}_1$ and $\dot{\sigma}$ are random draws from their posterior distribution (mice.impute.norm())
- Bootstrap multiple imputation: y = β₀ + X_{mis}β₁ + ϵ, where β₀, β₁ and σ are the least squares estimates calculated from a bootstrap sample taken from the observed data (mice.impute.norm.boot())

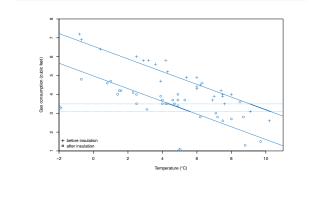
Simulation results for four normal methods (missing x)

Method	Bias	% Bias	Coverage	CI Width	RMSE
norm.predict	-0.1007	34.7	0.359	0.160	0.118
norm.nob	0.0006	0.2	0.924	0.202	0.056
norm	0.0075	2.6	0.955	0.254	0.058
norm.boot	-0.0014	0.5	0.946	0.238	0.058
Listwise deletion	-0.0001	0.0	0.946	0.251	0.063

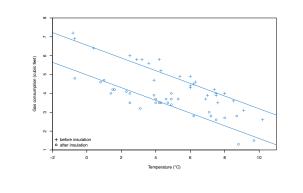
https://stefvanbuuren.name/fimd/sec-linearnormal.html#sec: perflin



PMM: Define a matching range $\hat{y} \pm \delta$

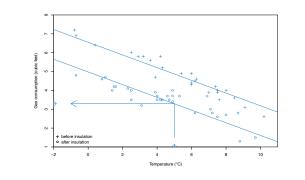


PMM: Add two regression lines

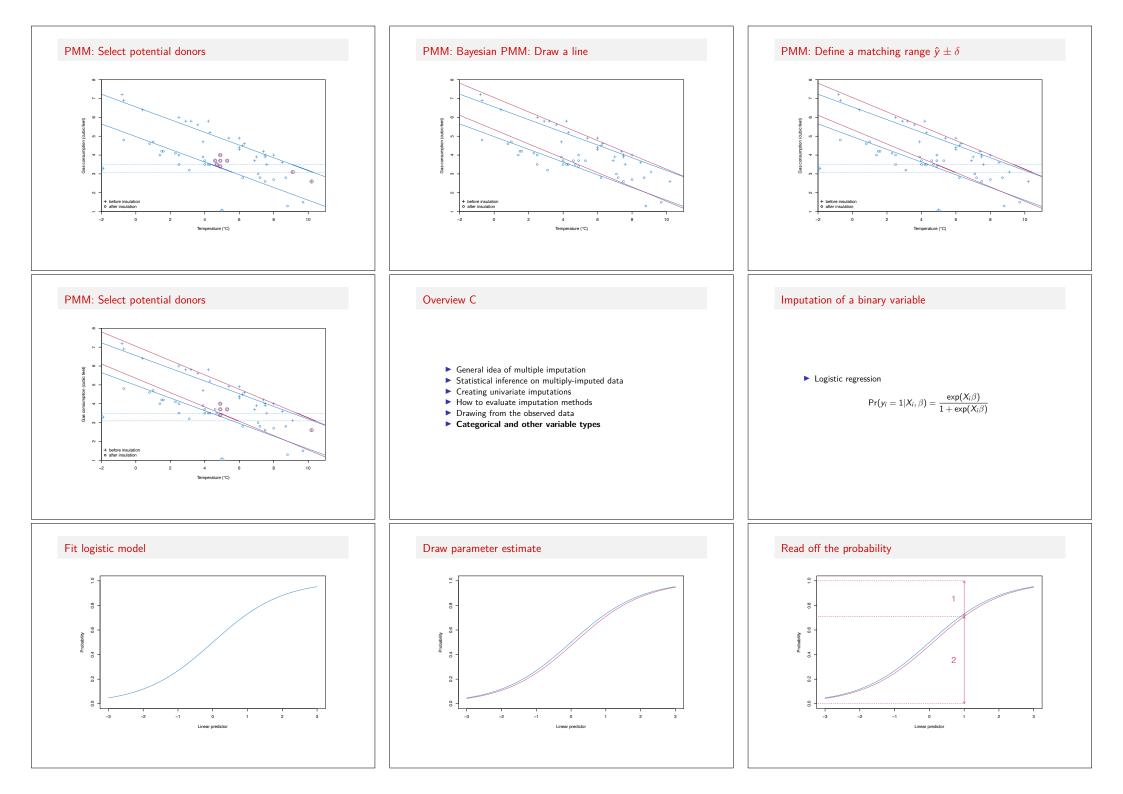


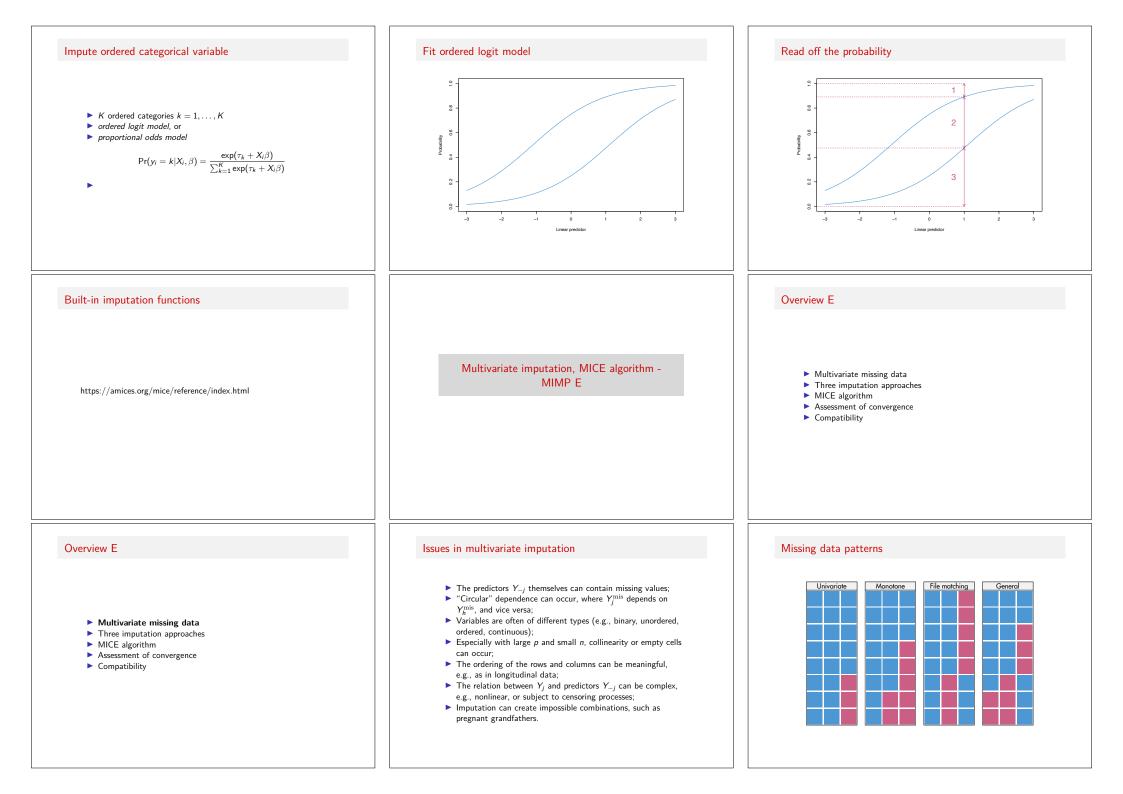
N - + before insulation o after insulation 0 2 4 6

PMM: Predicted given 5°,C, 'after insulation'

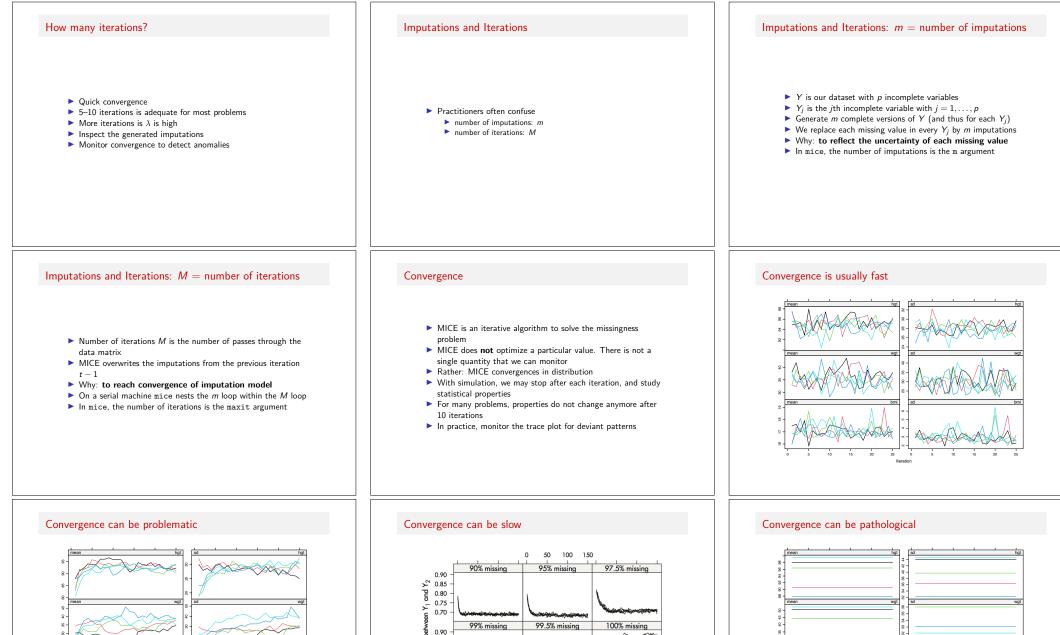


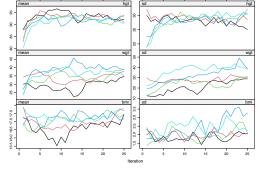
Temperature (°C

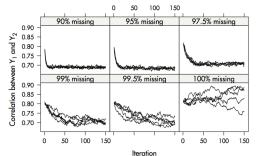


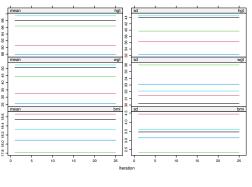


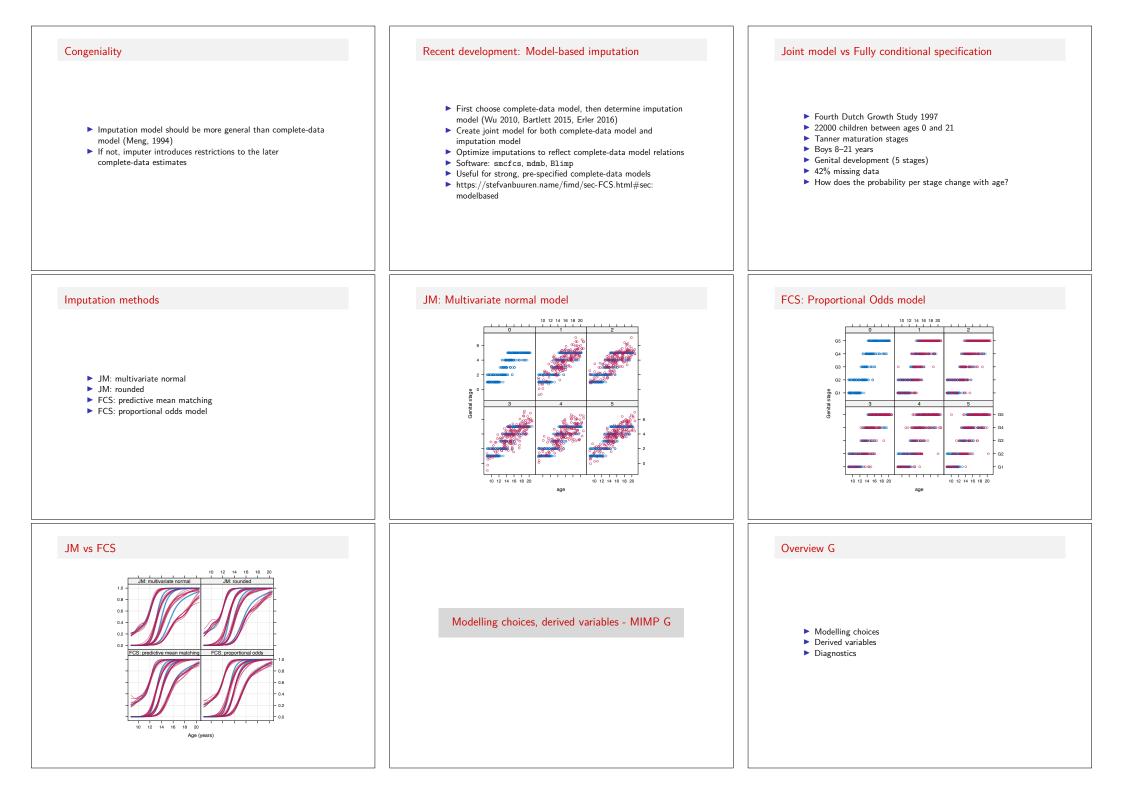
Joint modelling - 3	Joint modelling - 4	Joint modelling - next iteration - 5
Joint modelling - next iteration - 6	Joint modelling - Steps	Joint modelling - Software
	 Specify joint model P(Y, X, R) Derive P(Y_{mis} Y_{obs}, X, R) Use MCMC techniques to draw imputations Y_{mis} 	R/S Plus norm, cat, mix, pan, Amelia, jointAI SAS proc MI, proc MIANALYZE STATA MI command Stand-alone Amelia, solas, norm, pan
Joint modeling: Pro's	Joint Modeling: Con's	Fully conditional specification - 1
 Yield correct statistical inference under the assumed JM Efficient parametrization (if the model fits) Known theoretical properties Works very well for parameters close to the center Many applications 	 Lack of flexibility May lead to large models Can assume more than the complete data problem Can impute impossible data 	

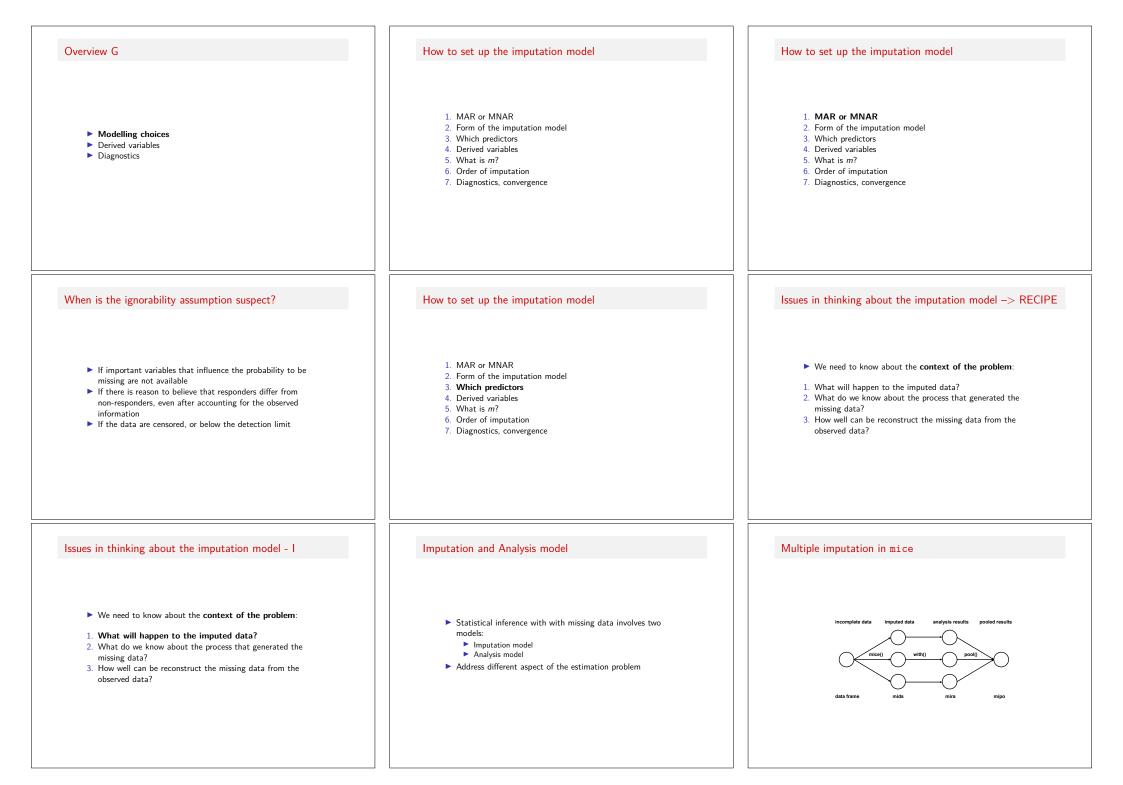






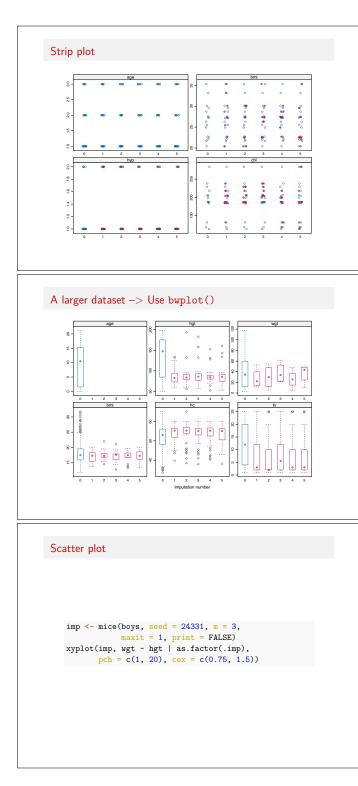






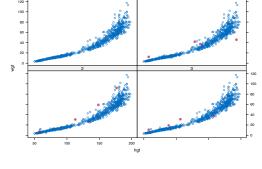
Imputation and Analysis model: Imputation model	Imputation and Analysis model: Analysis model	Imputation and Analysis model
 Imputation model The model we use to draw imputations Reflects our knowledge about the true (but unknown) values Technically: posterior predictive distribution of each missing entry 	 Analysis model AKA: complete-data model, substantive model The model we use to estimate the parameters of scientific interest (Q) The model we would fit had the data been complete Technically: any model that estimates the thing we want to know 	 Are the imputation and analysis models entirely independent? NO! Imputation model should more general to the analysis model When this is true, Meng (1994) said that imputation and analysis models are congenial Take-home message: When creating imputed data, imagine future analysis models applied to the imputed data sets extend imputation model to account for relations specified in the analysis model
Imputation and Analysis model. Who's driving?	Issues in thinking about the imputation model - II	Imputation model and Missing Data Model
 Model-based imputation First choose analysis model, then inform/derive the imputation model When: If there is a strong scientific model When: If you know that certain relations hold Data-based imputation Use the observed data to impute the missing data, then do analyses When: If there are multiple analysis models When: If you are unsure about relation between variables Use both perspectives to improve imputation and analysis 	 We need to know about the context of the problem: 1. What will happen to the imputed data? 2. What do we know about the process that generated the missing data? 3. How well can be reconstruct the missing data from the observed data? 	 Missing Data Model = Missing Data Mechanism Process that governs which Y's are observed and which Y's are unobserved (Rubin, 1976) Sometimes we know this process (e.g.~experimental design, sampling) Default MICE assumes a Missing At Random (MAR) mechanism Assumption: We can explain differences in response probability by the observed data Implication (FIMD2, eq. 2.10): After conditioning on the observed data, the distribution of outcomes is the same for responders and non-responders Take-home message: When creating imputed data, extend imputation model with factors related to the missingness
Issues in thinking about the imputation model - III	Predictability of the missing values	Issues in thinking about the imputation model -> RECIPE
 We need to know about the context of the problem: 1. What will happen to the imputed data? 2. What do we know about the process that generated the missing data? 3. How well can be reconstruct the missing data from the observed data? 	 Higher predictability means more precise estimates shorter confidence intervals more powerful tests fewer imputations (m) needed Higher predictability is beneficial, but "limited by nature" Social en medical data often do not predict well 	 We need to know about the context of the problem: 1. What will happen to the imputed data? 2. What do we know about the process that generated the missing data? 3. How well can be reconstruct the missing data from the observed data?

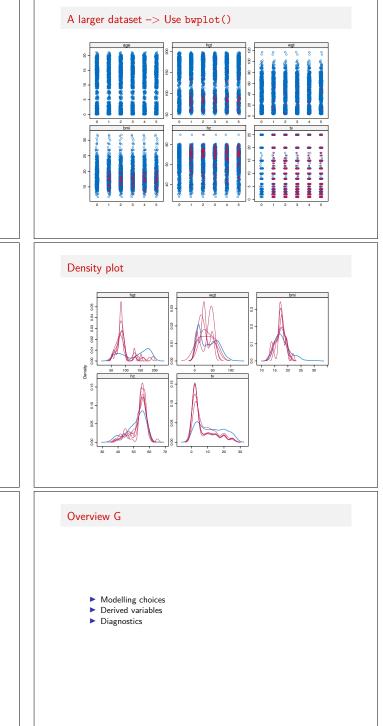
Which predictors to include? RECIPE Overview G How to set up the imputation model 1. Include all variables that appear in the analysis model, including transformations and interactions 1. MAR or MNAR 2. Include all variables that are related to the nonresponse 2. Form of the imputation model 3. Include all variables that explain a considerable amount of Modelling choices 3. Which predictors variance Derived variables 4. Derived variables 4. Remove variables that have too many missing values within Diagnostics 5. What is m? the subgroup of incomplete cases 6. Order of imputation 7. Diagnostics, convergence Functions mice::quickpred() and mice::flux() https://stefvanbuuren.name/fimd/sec-modelform.html#sec: predictors Derived variables Imputing a ratio Derived variables: summary ratio of two variables Impute then transform (POST in FIMD1) Derived variables pose special challenges sum score Just another variable (JAV) Plausible values should respect data dependencies index variable Passive imputation If you can, create derived variables after imputation quadratic relations Model-based imputation (new) Best option: Probably model-based imputation interaction term More work needed to verify conditional imputation https://stefvanbuuren.name/fimd/sec-knowledge.html compositions Standard diagnostic plots in mice Overview G Strip plot In general, inspect the overlap between red and blue points. library(mice) Modelling choices One-dimensional scatter plot: stripplot() Derived variables imp <- mice(nhanes, seed = 29981, print = FALSE)</pre> Box-and-whisker plot: bwplot() stripplot(imp, pch = c(1, 19)) Diagnostics Densities: densityplot() Scattergram: xyplot()

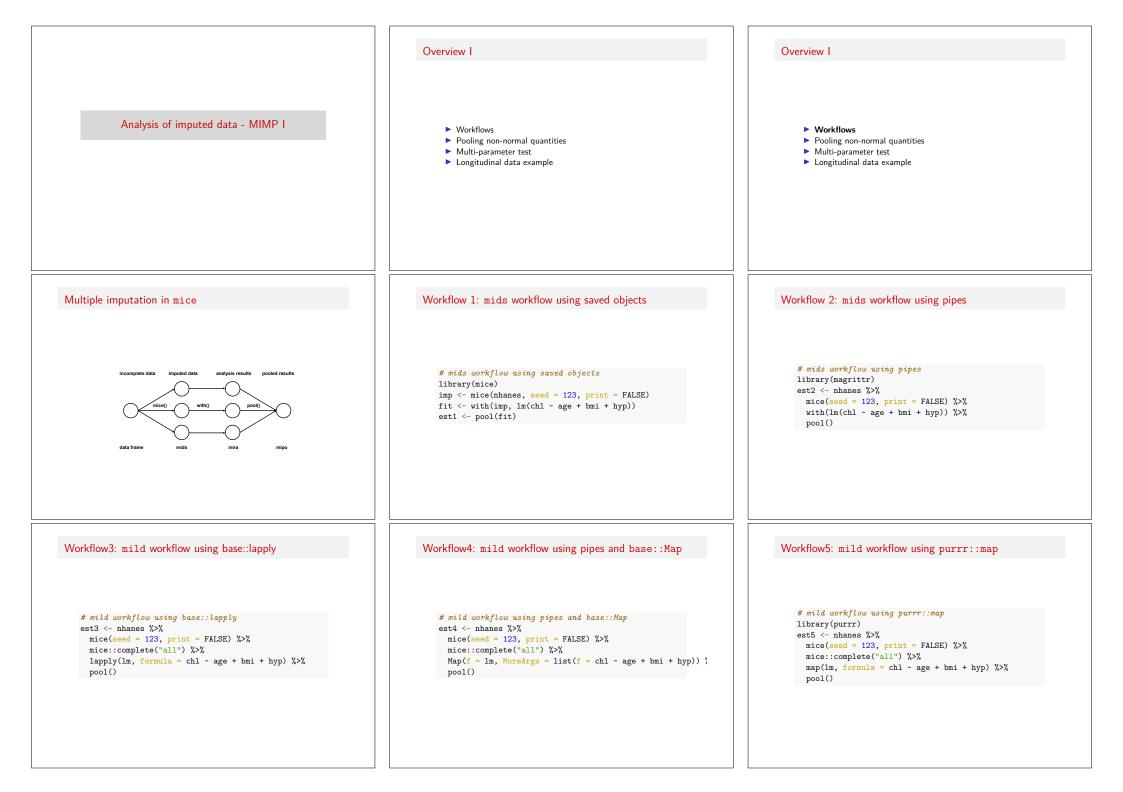


A larger dataset -> Use bwplot() imp <- mice(boys, seed = 24331, maxit = 1) bwplot(imp)</pre> Density plot densityplot(imp)

Scatter plot







Workflow6: long workflow using base::by

long workflow using base::by est6 <- nhanes %>% mice(seed = 123, print = FALSE) %>% mice::complete("long") %>% by(as.factor(.\$.imp), lm, formula = chl ~ age + bmi + hyp pool()

Not recommended: Stack *m* imputed data sets

- Simple to do
- ▶ Weight each record by 1/m
- One dataset to analyse
- Unbiased regression coefficients for linear models
- Inherits many problems of single imputation
- Wrong confidence intervals, statistical test
- Dubious for non-linear models

Pooling non-normal quantities

Table 3: Suggested transformations towards normality for various types of statistics. The transformed quantities can be pooled by Rubin's rules.

Statistic	Transformation	Source
Correlation	Fisher z	Schafer (1997)
Odds ratio	Logarithm	Agresti (1990)
Relative risk	Logarithm	Agresti (1990)
Hazard ratio	Logarithm	Marshall (2009)
Explained variance R ²	Fisher z on root	Harel (2009)
Survival probabilities	Complementary log-log	Marshall (2009)
Survival distribution	Logarithm	Marshall (2009)

Workflow7: long workflow using a dplyr list-column

long workflow using a dplyr list-column library(dplyr) est7 <- nhanes %>% mice(seed = 123, print = FALSE) %>% mice::complete("long") %>% group_by(.imp) %>% do(model = lm(formula = chl ~ age + bmi + hyp, data = .)) as.list() %>% .[[-1]] %>% pool()

Overview I

- Workflows
- Pooling non-normal quantities
- Multi-parameter test
- Longitudinal data example

Overview I

Workflows

- Pooling non-normal quantities
- Multi-parameter test
- Longitudinal data example

Not recommended: Average *m* imputed datasets

- Simple to do (for numeric data)
- One dataset to analyse
- Inherits all problems of single imputation
 - Ecological fallacy, e.g., overstates correlation
 - Biased parameter estimates
 - Wrong confidence intervals

Pooling normal quantities

- ▶ Rubin (1987, p.~75) assumes normality of complete-data statistic
- Many statistics are approximately normally distributed, especially for large n
 - mean
 - standard deviation
 - regression coefficients
 - proportions
 - linear predictors
- Advice: Use Rubin's rules for such quantities

Multi-parameter tests

When?

- Testing significance of set of variables
- Testing significance of a categorical variable
 If we only have test-statistics or *P*-values
- D1 Multivariate Wald test
- D2 Combined test statistics
- D3 Likelihood ratio test
- https://stefvanbuuren.name/fimd/sec-multiparameter.html

Example: Test categorical variable age Example: Test categorical variable age $D_1, D_2 \text{ or } D_3?$ Models: model formula 1 chl ~ age + bmi imp <- mice(nhanes2, m = 10, print = FALSE, seed = 71242)</pre> ▶ If you can, use D₁() chl ~ bmi 2 m2 <- with(imp, lm(chl ~ age + bmi))</pre> ▶ Use D₂() if you have only the test statistics/P values, and m1 <- with(imp, lm(chl ~ bmi))</pre> with m > 20Comparisons: summary(D1(m2, m1)) ▶ $D_3()$ or $D_1()$ are about equally good for samples n > 200test statistic df1 df2 dfcom p.value riv 1 ~~ 2 5.02 2 11.9 21 0.0263 0.628 Number of imputations: 10 Method D1 Longitudinal data example Overview I Longitudinal data imputation Long and Wide data Wide matrix feels most natural to applied researchers Workflows Wide matrix is suitable if data are observed at ▶ If you can, impute the Wide data Pooling non-normal quantities Preserves relations over time (approximately) equal time points Multi-parameter test Long matrix is expected by software designed for time-varying Independence of row (persons) Longitudinal data example data If you cannot, use multilevel imputation Convert wide -> long: tidyr::pivot_longer() Convert long -> wide: tidyr::pivot_wider() https://stefvanbuuren.name/fimd/sec-longandwide.html SE Fireworks Disaster Saturday, May 13 2000, Enschede SE Fireworks Disaster 23 killed 950 injured 500 houses destroyed 1250 homeless 10000 evacuated post-traumatic stress

