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Overview

Why this course?

I Missing data are everywhere
I Ad-hoc fixes do not (always) work
I Multiple imputation is broadly applicable, yield correct

statistical inferences, and there is good software
I Goal: Get comfortable with a powerful way of solving missing

data problems
I We use the mice package in R

Reading materials

I Van Buuren, S. and Groothuis-Oudshoorn, C.G.M. (2011).
mice: Multivariate Imputation by Chained Equations in R.
Journal of Statistical Software, 45(3), 1–67.
https://www.jstatsoft.org/article/view/v045i03

I Van Buuren, S. (2018). Flexible Imputation of Missing Data.
Second Edition. Chapman & Hall/CRC, Boca Raton, FL. Free
text: https://stefvanbuuren.name/fimd Order book:
https://www.crcpress.com/Flexible-Imputation-of-Missing-
Data-Second-Edition/Buuren/p/book/9781138588318

R

I Why R?



R software and examples

I Course site: https://www.gerkovink.com/mimp
I R install from https://cran.r-project.org
I R package: mice 3.14.0,

https://cran.r-project.org/package=mice
I Development version: mice 3.14.7,

https://github.com/amices/mice
I Documentation: https://amices.org/mice/
I Example code: https://github.com/stefvanbuuren/fimdbook/

blob/master/R/fimd.R

Course schedule

Day Location Lecture.1 Practical.1 Lecture.2 Practical.2
9am - 10.30am 10.45am - 12.15pm 1.15pm - 2.30pm 2.45pm - 4pm

Monday Atlas A B C D
Tuesday Atlas E F G H
Wednesday Atlas I J K L
Thursday Van Lier M N O P

Schedule for Monday, Jul 11

Slot Type Description FIMD2
A L Introduction Ch1
B P Ad-hoc methods and mice nhanes
C L Multiple imputation, Univariate Ch2, 3.1–3.7
D P Imputation with mice nhanes

Schedule for Tuesday, Jul 12

Slot Type Description FIMD2
E L Multivariate imputation Ch4,5.6
F P Multivariate imputation in R mammalsleep, boys
G L Modelling, derived variables 6.1-6.4
H P Imputation derived variables mammalsleep, boys

Schedule for Wednesday, Jul 13

Slot Type Description FIMD2
I L Combining inferences Ch5
J P Analysis in R
K L Sensitivity, reporting 3.8, 9.2, 12.2
L P Approach to sensitivity analysis leiden85

Schedule for Thursday, Jul 14

Slot Type Description FIMD2
M L Advanced features various
N P Advanced features with in mice
O L Capita selecta
P P Get advice/support

Introduction into missing data - MIMP A

Overview A

I Evolving views on missing data
I Why are missing data interesting?
I Terminology and concepts
I Strategies to deal with missing data
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Evolving views on missing data - 1970

“Obviously the best way to treat missing data is not to
have them.”
— Orchard and Woodbury, 1972

Evolving views on missing data - 2000

“Sooner or later (usually sooner), anyone who does statis-
tical analysis runs into problems with missing data.”
— Paul Allison, 2002

Evolving views on missing data - 2020

“Dark data are concealed from us, and that very fact
means we are at risk of misunderstanding, of drawing in-
correct conclusions, and of making poor decisions.”
— David Hand, 2020

Challenger space shuttle - 28 Jan 1986 - 7 deaths Challenger space shuttle - 28 Jan 1986 - 7 deaths

Challenger space shuttle - 28 Jan 1986 - 7 deaths Challenger space shuttle - 28 Jan 1986 - 7 deaths Challenger space shuttle - 28 Jan 1986 - 7 deaths



Dark data types (1/2)

I DD-Type 1: Data We Know Are Missing
I DD-Type 2: Data We Don’t Know are Missing
I DD-Type 3: Choosing Just Some Cases
I DD-Type 4: Self-Selection
I DD-Type 5: Missing What Matters
I DD-Type 6: Data Which Might Have Been
I DD-Type 7: Changes with Time
I DD-Type 8: Definitions of Data
I DD-Type 9: Summaries of Data
I DD-Type 10: Measurement Error and Uncertainty

Dark data types (2/2)

I DD-Type 11: Feedback and Gaming
I DD-Type 12: Information Asymmetry
I DD-Type 13: Intentionally Darkened Data
I DD-Type 14: Fabricated and Synthetic Data
I DD-Type 15: Extrapolating beyond Your Data

Definition of missing values

I Missing values are those values that are not observed
I Values do exist in theory, but we are unable to see them

Overview A

I Evolving views on missing data
I Why are missing data interesting?
I Terminology and concepts
I Strategies to deal with missing data

Why are missing data interesting?

I MISSING DATA ARE THE HEART OF STATISTICS
I Taking a sample
I Estimating a causal e�ect
I Predicting future outcome
I Combining data from di�erent sources

Sampling example

Experiment example Matching example Reasons

Missing data can occur for a lot of reasons. For example

I death, dropout, refusal, concealed
I routing, experimental design
I join, merge, bind
I too far away, too small to observe
I power failure, budget exhausted, bad luck



Why are missing values problematic?

I Cannot calculate, not even the mean
I Less information than planned
I Enough statistical power?
I Di�erent analyses, di�erent n’s
I Systematic biases in the analysis
I Appropriate confidence interval, P-values?

Missing data can severely complicate interpretation and analysis

Overview A

I Evolving views on missing data
I Why are missing data interesting?
I Terminology and concepts
I Strategies to deal with missing data

Some confusing terminology

Complete data = Observed data + Unobserved data

Incomplete data = Observed data

Missing data = Unobserved data

Complete cases = subset of rows in the observed data without
missing values

Complete variables = subset of columns in the observed data
without missing values

Complete data Incomplete data = observed data Missing data = unobserved data

Notation: Y , R , X

I Y random variable with missing data
I Y obs true and observed values of Y
I Y mis true but unobserved values of Y , missing values
I R response indicator
I R = 1 if Y is observed
I R = 0 if Y is missing
I X complete covariate

Missing data mechanism

I Process that governs which Y ’s are observed and which Y ’s
are unobserved (Rubin, 1976)

I Sometimes we know this process (e.g.~experimental design,
sampling)

I Alternatively, model by response probability
P(R|Y obs, Y mis, X )

I Also called missing data model

MCAR: Missing Completely at Random

I Probability to be missing is not related to any data

P(R|Y obs, Y mis, X , Â) = P(R|Â)

I Examples
I data transmission error
I random sample



MAR: Missing at Random

I Probability to be missing depends on known data

P(R|Y obs, Y mis, X , Â) = P(R|Y obs, X , Â)

I Examples
I Income, where we have X related to wealth
I Branch patterns (e.g. how old are your children?)

MNAR: Missing Not at Random

I Probability to be missing depends on unknown data

P(R|Y obs, Y mis, X , Â) does not simplify

I Examples
I Income, without covariates related to income
I Body weight report
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Strategies to deal with missing data

I Prevention
I Ad-hoc methods, e.g., single imputation, complete cases
I Weighting methods
I Likelihood methods, EM-algorithm
I Multiple imputation

Prevention

I Design: Time intervals, Number of variables, Pilot study
I Collection: Incentives, Match interviewer-respondent, Quick

follow-up, Retrieve missing data
I Measures: Use short forms, Minimize intrusive measures,

Clarity, Layout
I Treatment: Minimize burden and intensity
I Data entry: Double coding

Strategies to deal with missing data

I Prevention
I Ad-hoc methods, e.g., single imputation, complete cases
I Weighting methods
I Likelihood methods, EM-algorithm
I Multiple imputation

Listwise deletion, complete-case analysis

I Analyze only the complete records
I Advantages

I Simple (default in most software)
I Unbiased under MCAR
I Conservative standard errors, significance levels
I Two special properties in regression

Listwise deletion: Special properties

I For any regression with missing in X , estimates under listwise
deletion are unbiased as long as the missingness does not
depend on Y . Includes even some cases of MNAR (Glynn &
Laird, 1986; Little 1992).

I In logistic regression: With missing in Y or X (but not both),
parameter estimates under listwise deletion are unbiased as
long as the missingness depends only on Y (and not on X )
(except for the intercept) (Vach 1994). This property is
widely exploited in case-control studies in epidemiology.

I See FIMD2 2.7
https://stefvanbuuren.name/fimd/sec-when.html

Listwise deletion, complete-case analysis

I Disadvantages
I Wasteful
I May not be possible
I Larger standard errors
I Biased under MAR, even for simple statistics like the mean
I Inconsistencies in reporting



Mean imputation

I Replace the missing values by the mean of the observed data
I Advantages

I Simple
I Unbiased for the mean, under MCAR

Mean imputation
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Mean imputation

I Disadvantages
I Disturbs the distribution
I Underestimates the variance
I Biases correlations to zero
I Biased under MAR

I AVOID (unless you know what you are doing)

Regression imputation

I Also known as prediction
I Fit model for Y obs under listwise deletion
I Predict Y mis for records with missing Y ’s
I Replace missing values by prediction

I Advantages
I Under MAR, unbiased estimates of regression coe�cients
I Good approximation to the (unknown) true data if explained

variance is high
I Favourite among data scientists and machine learners

Regression imputation
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Regression imputation

I Disadvantages
I Artificially increases correlations
I Systematically underestimates the variance
I Too optimistic P-values and too short confidence intervals

I AVOID. Harmful to statistical inference

Stochastic regression imputation

I Like regression imputation, but adds appropriate noise to the
predictions to reflect uncertainty

I Advantages
I Preserves the distribution of Y obs

I Preserves the correlation between Y and X in the imputed
data

Stochastic regression imputation
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Stochastic regression imputation

I Disadvantages
I Symmetric and constant error restrictive
I Single imputation: does not take uncertainty imputed data

into account, and incorrectly treats them as real
I Not so simple anymore



Indicator method

I Also known as dummy variable adjustment
I Complete-data model: Y = X— + ‘, missing data in X
I Pseudocode: recode X(missing(X)=1, else=0) into R
I recode X(missing(X)=mean(X),else=copy) into Z
I Fit Y = Z— + R“ + ‘ instead of Y = X— + ‘
I Advantages

I Simple
I Can increase e�ciency of the treatment estimate in

randomized trails, even under some MNAR cases

Indicator method

I Disadvantages
I Biased estimates, even under MCAR
I Incorrect P-values and confidence intervals

I AVOID, unless you have a good reason not to

Overview of assumptions needed

Unbiased Standard Error
Mean Reg Weight Correlation

Listwise MCAR MCAR MCAR Too large
Pairwise MCAR MCAR MCAR Complicated
Mean MCAR – – Too small
Regression MAR MAR – Too small
Stochastic MAR MAR MAR Too small
LOCF – – – Too small
Indicator – – – Too small

Strategies to deal with missing data

I Prevention
I Ad-hoc methods, e.g., single imputation, complete cases
I Weighting methods
I Likelihood methods, EM-algorithm
I Multiple imputation

Weighting

I Take the complete cases
I Re-weight any statistic to the distribution of the covariates in

the population
I Advantages

I Simple (one set of weights for all incomplete variables)
I In SPSS: WEIGHT command
I Reduces bias under MAR assumption
I Standard methodology in o�cial statistics

I Disadvantages
I Discards data, increases the variance
I Weights may not be available
I Needs special variance estimators
I Limited to unit non-response

Strategies to deal with missing data

I Prevention
I Ad-hoc methods, e.g., single imputation, complete cases
I Weighting methods
I Likelihood methods, EM-algorithm
I Multiple imputation

Maximum likelihood

I EM: Expectation-Maximization algorithm
I Direct ML
I Full Information Maximum Likelihood (FIML)
I Iterative methods to estimate parameters that e�ectively

ignore the missing data
I Advantages:

I Optimizes likelihood calculation directly
I Many applications, widely accepted
I Theoretically grounded
I Easy to apply (when there is software)

I Disadvantages
I Local minima, slow convergence
I Di�cult to apply outside standard models

Maximum likelihood software

I Mixed models: Proc Mixed (SAS), MLWin
I Structural models: AMOS, Mplus, Mx
I Rasch analyse: RUMM2030

Strategies to deal with missing data

I Prevention
I Ad-hoc methods, e.g., single imputation, complete cases
I Weighting methods
I Likelihood methods, EM-algorithm
I Multiple imputation



Multiple imputation

I Imputes each missing value m times
I Variation between the m imputed values reflects our ignorance

about the unknown value

Multiple imputation

I Advantages
I Correct point and variance estimates
I Splits missing data problem from complete-data analysis
I Theoretical properties well established
I Flexible, widely applicable
I Extensible to MNAR

I Disadvantages
I Need to create and work with multiple imputed data sets
I May not always be most e�cient

Conclusion

I Missing data are a fact of life, and actually interesting
I There are many ways to treat missing data, only few are valid
I Always try to prevent missing data
I Use ad-hoc methods with caution
I Listwise deletion up to 5% of missing data per variable
I Weighting and likelihood methods are generally valid, but may

be complex
I Multiple imputation is an all-round general purpose method

Multiple imputation, univariate - MIMP C

Overview C

I General idea of multiple imputation
I Statistical inference on multiply-imputed data
I Creating univariate imputations
I How to evaluate imputation methods
I Drawing from the observed data
I Categorical and other variable types

Overview C

I General idea of multiple imputation
I Statistical inference on multiply-imputed data
I Creating univariate imputations
I How to evaluate imputation methods
I Drawing from the observed data
I Categorical and other variable types

Multiple imputation

I Imputes each missing value m times
I Variation between the m imputed values reflects our ignorance

about the unknown value

Acceptance of multiple imputation
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Figure 1: Source: Scopus (May 27, 2021)

Multiple imputation steps



Estimand

I Q is a quantity of scientific interest in the population.
I Q can be a vector of population means, population regression

weights, population variances, and so on.
I Q may not depend on the particular sample, thus Q cannot

be a standard error, sample mean, p-value, and so on.

Goal of multiple imputation

I Estimate Q by Q̂ or Q̄ accompanied by a valid estimate of its
uncertainty.

I What is the di�erence between Q̂ or Q̄?
I Q̂ and Q̄ both estimate Q
I Q̂ accounts for the sampling uncertainty
I Q̄ accounts for the sampling and missing data uncertainty

Pooled estimate Q̄

Q̂¸ is the estimate of the ¸-th repeated imputation

Q̂¸ contains k parameters, represented as a k ◊ 1 column vector

Pooled estimate Q̄ is simply the average

Q̄ = 1
m

mÿ

¸=1
Q̂¸

Within-imputation variance

Average of the complete-data variances as

Ū = 1
m

mÿ

¸=1
Ū¸,

where Ū¸ is the variance-covariance matrix of Q̂¸ obtained for the
¸-th imputation

Ū¸ is the variance is the estimate, not the variance in the data

Within-imputation variance is large if the sample is small

Between-imputation variance

Variance between the m complete-data estimates is given by

B = 1
m ≠ 1

mÿ

¸=1
(Q̂¸ ≠ Q̄)(Q̂¸ ≠ Q̄)Õ,

where Q̄ is the pooled estimate.

The between-imputation variance is large there many missing data

Total variance

The total variance is not simply T = Ū + B

The correct formula is

T = Ū + B + B/m

= Ū +
3

1 + 1
m

4
B (1)

for the total variance of Q̄m, and hence of (Q ≠ Q̄) if Q̄ is unbiased

The term B/m is the simulation error

Three sources of variation

In summary, the total variance T stems from three sources:

1. Ū, the variance caused by the fact that we are taking a
sample rather than the entire population. This is the
conventional statistical measure of variability;

2. B, the extra variance caused by the fact that there are missing
values in the sample;

3. B/m, the extra simulation variance caused by the fact that
Q̄m itself is based on finite m.

Variance ratio’s (1)

Proportion of the variation attributable to the missing data

⁄ = B + B/m
T

Relative increase in variance due to nonresponse

r = B + B/m
Ū

These are related by r = ⁄/(1 ≠ ⁄).

Variance ratio’s (2)

Fraction of information about Q missing due to nonresponse

“ = r + 2/(‹ + 3)
1 + r

This measure needs an estimate of the degrees of freedom ‹ (c.f.
section 2.3.6)

Relation between “ and ⁄

“ = ‹ + 1
‹ + 3⁄ + 2

‹ + 3 .

The literature often confuses “ and ⁄.



Degrees of freedom (1)

With missing data, n is e�ectively lower. Thus, the degrees of
freedom in statistical tests need to be adjusted.

The old formula assumes n = Œ:

‹old = (m ≠ 1)
3

1 + 1
r2

4

= m ≠ 1
⁄2 (2)

Degrees of freedom (2)

The new formula is

‹ = ‹old‹obs
‹old + ‹obs

. (3)

where the estimated observed-data degrees of freedom that
accounts for the missing information is

‹obs = ‹com + 1
‹com + 3‹com(1 ≠ ⁄). (4)

with ‹com = n ≠ k.

Overview C

I General idea of multiple imputation
I Statistical inference on multiply-imputed data
I Creating univariate imputations
I How to evaluate imputation methods
I Drawing from the observed data
I Categorical and other variable types

Statistical inference for Q̄ (1)

The 100(1 ≠ –)% confidence interval of a Q̄ is calculated as

Q̄ ± t(‹,1≠–/2)
Ô

T ,

where t(‹,1≠–/2) is the quantile corresponding to probability
1 ≠ –/2 of t‹ .

For example, use t(10, 0.975) = 2.23 for the 95% confidence
interval for ‹ = 10.

Statistical inference for Q̄ (2)

Suppose we test the null hypothesis Q = Q0 for some specified
value Q0. We can find the P-value of the test as the probability

Ps = Pr
C

F1,‹ >
(Q0 ≠ Q̄)2

T

D

where F1,‹ is an F distribution with 1 and ‹ degrees of freedom.

How large should m be?

Classic advice: m = 3, 5, 10. More recently: set m higher: 20–100.

Some advice:

I Use m = 5 or m = 10 if the fraction of missing information is
low, “ < 0.2.

I Develop your model with m = 5. Do final run with m equal to
percentage of incomplete cases.

Example of imputation-analysis-pooling steps

Multiple imputation in mice

incomplete data imputed data analysis results pooled results

data frame mids mira mipo

mice() with() pool()

Inspect the data

library("mice")
head(nhanes)

age bmi hyp chl
1 1 NA NA NA
2 2 22.7 1 187
3 1 NA 1 187
4 3 NA NA NA
5 1 20.4 1 113
6 3 NA NA 184



Inspect missing data pattern

md.pattern(nhanes, plot = FALSE)

age hyp bmi chl
13 1 1 1 1 0
3 1 1 1 0 1
1 1 1 0 1 1
1 1 0 0 1 2
7 1 0 0 0 3

0 8 9 10 27

Multiply impute the missing data

imp <- mice(nhanes, print = FALSE, maxit = 10, seed = 1)
plot(imp)

Iteration
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Inspect the tracelines for convergence

plot(imp)

Iteration
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Stripplot of observed and imputed data

stripplot(imp, pch = 20, cex = 1.2)
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Analyse and pool

fit <- with(imp, lm(bmi ~ age))
est <- pool(fit)
summary(est)

term estimate std.error statistic df p.value
1 (Intercept) 30.40 2.25 13.49 10.4 6.34e-08
2 age -2.02 1.11 -1.83 12.6 9.09e-02

Overview C
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I Categorical and other variable types

Relation between temperature and gas consumption
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Predict imputed value from regression line
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Predicted value + noise
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Predicted value + noise + parameter uncertainty
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Imputation based on two predictors
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I General idea of multiple imputation
I Statistical inference on multiply-imputed data
I Creating univariate imputations
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I Categorical and other variable types

How to evaluate imputation methods

I https://stefvanbuuren.name/fimd/sec-evaluation.html
I Four evaluation criteria
I Example code

How to evaluate imputation methods: bias

I Raw bias (RB) and percent bias (PB).
I The raw bias of the estimate Q̄ is defined as the di�erence

between the expected value of the estimate and truth:
RB = E(—Q) ≠ Q.

I RB should be close to zero.
I Bias can also be expressed as percent bias:

PB = 100 ◊ |(E(—Q) ≠ Q)/Q|.
I For acceptable performance we use an upper limit for PB of

5%.

How to evaluate imputation methods: coverage

I Coverage rate (CR).
I The coverage rate (CR) is the proportion of confidence

intervals that contain the true value. The actual rate should
be equal to or exceed the nominal rate. If CR falls below the
nominal rate, the method is too optimistic, leading to false
positives.

I A CR below 90 percent for a nominal 95 percent interval
indicates poor quality.

I A high CR (e.g., 0.99) may indicate that confidence interval is
too wide, so the method is ine�cient and leads to inferences
that are too conservative.

I Inferences that are “too conservative” are generally regarded a
lesser sin than “too optimistic”.

How to evaluate imputation methods: e�ciency

I Average width (AW)
I The AW of the confidence interval is an indicator of statistical

e�ciency.
I The length should be as small as possible, but not so small

that the CR will fall below the nominal level.

How to evaluate imputation methods: RMSE

I Root mean squared error (RMSE). The
RMSE =


(E(—Q) ≠ Q)2 is a compromise between bias and

variance, and evaluates Q̄ on both accuracy and precision.
I The RMSE is widely used in machine learning and data.
I Less useful to evaluate multiple imputation methods.



What can go wrong with the RMSE?

Suppose we measure the average discrepancy between the true and
imputed values by the RMSE:

RMSE =
ı̂ıÙ 1

nmis

nmisÿ

i=1
(ymis

i ≠ ẏi)2 (5)

I Minimizing this criterion alone selects methods that ignore the
uncertainty of the prediction.

I Amplifies the relations between the data and leads to too
optimistic P-values.

I Except in trivial cases, imputation methods cannot
reconstruct the true data!

I Bottom line: Do not use this RMSE

Four techniques for normal data

1. Predict: ẏ = —̂0 + Xmis—̂1 (mice.impute.norm.predict())
2. Predict + noise: ẏ = —̂0 + Xmis—̂1 + ‘̇

(mice.impute.norm.nob())
3. Bayesian multiple imputation: ẏ = —̇0 + Xmis—̇1 + ‘̇, where —̇0,

—̇1 and ‡̇ are random draws from their posterior distribution
(mice.impute.norm())

4. Bootstrap multiple imputation: ẏ = —̇0 + Xmis—̇1 + ‘̇, where
—̇0, —̇1 and ‡̇ are the least squares estimates calculated from a
bootstrap sample taken from the observed data
(mice.impute.norm.boot())

Simulation results for four normal methods (missing x)

Method Bias % Bias Coverage CI Width RMSE
norm.predict -0.1007 34.7 0.359 0.160 0.118
norm.nob 0.0006 0.2 0.924 0.202 0.056
norm 0.0075 2.6 0.955 0.254 0.058
norm.boot -0.0014 0.5 0.946 0.238 0.058
Listwise deletion -0.0001 0.0 0.946 0.251 0.063

I https://stefvanbuuren.name/fimd/sec-linearnormal.html#sec:
perflin
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Drawing from the observed data
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PMM: Add two regression lines
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PMM: Predicted given 5¶,C, ‘after insulation’
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PMM: Select potential donors
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PMM: Bayesian PMM: Draw a line
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Overview C

I General idea of multiple imputation
I Statistical inference on multiply-imputed data
I Creating univariate imputations
I How to evaluate imputation methods
I Drawing from the observed data
I Categorical and other variable types

Imputation of a binary variable

I Logistic regression

Pr(yi = 1|Xi , —) = exp(Xi—)
1 + exp(Xi—)

Fit logistic model
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Impute ordered categorical variable

I K ordered categories k = 1, . . . , K
I ordered logit model, or
I proportional odds model

Pr(yi = k|Xi , —) = exp(·k + Xi—)
qK

k=1 exp(·k + Xi—)

I

Fit ordered logit model
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Built-in imputation functions

https://amices.org/mice/reference/index.html

Multivariate imputation, MICE algorithm -
MIMP E
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Issues in multivariate imputation

I The predictors Y≠j themselves can contain missing values;
I “Circular” dependence can occur, where Y mis

j depends on
Y mis

h , and vice versa;
I Variables are often of di�erent types (e.g., binary, unordered,

ordered, continuous);
I Especially with large p and small n, collinearity or empty cells

can occur;
I The ordering of the rows and columns can be meaningful,

e.g., as in longitudinal data;
I The relation between Yj and predictors Y≠j can be complex,

e.g., nonlinear, or subject to censoring processes;
I Imputation can create impossible combinations, such as

pregnant grandfathers.

Missing data patterns

Univariate Monotone File matching General
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Three general strategies

I Monotone data imputation
I Joint modeling
I Fully conditional specification (FCS)

Monotone data imputation - 1

Monotone data imputation - 2 Monotone data imputation - 3 Monotone data imputation - Steps

1. Sort the data Yj,obs with j = 1, . . . , p according to their
missingness.

2. Draw „̇1 ≥ P(Y1,obs|X )}
3. Impute Ẏ1 ≥ P(Y1,mis|X , „̇1)
4. Draw „̇2 ≥ P(Y2,obs|X , Ẏ1)
5. Impute Ẏ2 ≥ P(Y2,mis, Ẏ1, „̇2)}
6.

...

Monotone data imputation - Pro’s and con’s

I Pro’s
I Fast
I Flexible

I Con’s
I Only possible for monotone pattern

Joint modelling - 1 Joint modelling - 2



Joint modelling - 3 Joint modelling - 4 Joint modelling - next iteration - 5

Joint modelling - next iteration - 6 Joint modelling - Steps

1. Specify joint model P(Y , X , R)
2. Derive P(Ymis|Yobs, X , R)
3. Use MCMC techniques to draw imputations Ẏmis

Joint modelling - Software

R/S Plus norm, cat, mix, pan, Amelia, jointAI
SAS proc MI, proc MIANALYZE
STATA MI command
Stand-alone Amelia, solas, norm, pan

Joint modeling: Pro’s

I Yield correct statistical inference under the assumed JM
I E�cient parametrization (if the model fits)
I Known theoretical properties
I Works very well for parameters close to the center
I Many applications

Joint Modeling: Con’s

I Lack of flexibility
I May lead to large models
I Can assume more than the complete data problem
I Can impute impossible data

Fully conditional specification - 1



Fully conditional specification - 2 Fully conditional specification - 3 Fully conditional specification - 4

Fully conditional specification - 5 Fully conditional specification - next iteration - 6 Fully conditional specification - next iteration - 7

Overview E

I Multivariate missing data
I Three imputation approaches
I MICE algorithm
I Assessment of convergence
I Compatibility

Fully conditional specification (FCS), MICE algorithm

I Imputes multivariate missing data on a variable-by-variable
basis

I Requires a specification of an imputation model for each
incomplete variable

I Creates imputations per variable in an iterative fashion

Overview E
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I MICE algorithm
I Assessment of convergence
I Compatibility



How many iterations?

I Quick convergence
I 5–10 iterations is adequate for most problems
I More iterations is ⁄ is high
I Inspect the generated imputations
I Monitor convergence to detect anomalies

Imputations and Iterations

I Practitioners often confuse
I number of imputations: m
I number of iterations: M

Imputations and Iterations: m = number of imputations

I Y is our dataset with p incomplete variables
I Yj is the jth incomplete variable with j = 1, . . . , p
I Generate m complete versions of Y (and thus for each Yj)
I We replace each missing value in every Yj by m imputations
I Why: to reflect the uncertainty of each missing value
I In mice, the number of imputations is the m argument

Imputations and Iterations: M = number of iterations

I Number of iterations M is the number of passes through the
data matrix

I MICE overwrites the imputations from the previous iteration
t ≠ 1

I Why: to reach convergence of imputation model
I On a serial machine mice nests the m loop within the M loop
I In mice, the number of iterations is the maxit argument

Convergence

I MICE is an iterative algorithm to solve the missingness
problem

I MICE does not optimize a particular value. There is not a
single quantity that we can monitor

I Rather: MICE convergences in distribution
I With simulation, we may stop after each iteration, and study

statistical properties
I For many problems, properties do not change anymore after

10 iterations
I In practice, monitor the trace plot for deviant patterns

Convergence is usually fast
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Convergence can be problematic
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Convergence can be slow Convergence can be pathological
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Number of iterations

Watch out for situations where

I the correlations between the Yj ’s are high;
I the missing data rates are high; or
I constraints on parameters across di�erent variables exist.

Overview E

I Multivariate missing data
I Three imputation approaches
I MICE algorithm
I Assessment of convergence
I Compatibility

Compatibility

Compatibility Compatibility Compatibility

Compatibility Recent developments: Compatibility

I Incompatible conditional models cannot provide imputations
from any joint model

I However, multiple imputation using incompatible models is
consistent as long as each conditional model was correctly
specified (Liu 2013)

I Imputation models should closely model the data (Zhu 2015)

Compatibility and congeniality

I Compatibility: About relations among conditional distribution
in the imputation model

I Congeniality: About relation between the imputation model
and complete-data model

I https://stefvanbuuren.name/fimd/sec-FCS.html#sec:
congeniality



Congeniality

I Imputation model should be more general than complete-data
model (Meng, 1994)

I If not, imputer introduces restrictions to the later
complete-data estimates

Recent development: Model-based imputation

I First choose complete-data model, then determine imputation
model (Wu 2010, Bartlett 2015, Erler 2016)

I Create joint model for both complete-data model and
imputation model

I Optimize imputations to reflect complete-data model relations
I Software: smcfcs, mdmb, Blimp
I Useful for strong, pre-specified complete-data models
I https://stefvanbuuren.name/fimd/sec-FCS.html#sec:

modelbased

Joint model vs Fully conditional specification

I Fourth Dutch Growth Study 1997
I 22000 children between ages 0 and 21
I Tanner maturation stages
I Boys 8–21 years
I Genital development (5 stages)
I 42% missing data
I How does the probability per stage change with age?

Imputation methods

I JM: multivariate normal
I JM: rounded
I FCS: predictive mean matching
I FCS: proportional odds model

JM: Multivariate normal model
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How to set up the imputation model

1. MAR or MNAR
2. Form of the imputation model
3. Which predictors
4. Derived variables
5. What is m?
6. Order of imputation
7. Diagnostics, convergence

How to set up the imputation model

1. MAR or MNAR
2. Form of the imputation model
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4. Derived variables
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6. Order of imputation
7. Diagnostics, convergence

When is the ignorability assumption suspect?

I If important variables that influence the probability to be
missing are not available

I If there is reason to believe that responders di�er from
non-responders, even after accounting for the observed
information

I If the data are censored, or below the detection limit

How to set up the imputation model

1. MAR or MNAR
2. Form of the imputation model
3. Which predictors
4. Derived variables
5. What is m?
6. Order of imputation
7. Diagnostics, convergence

Issues in thinking about the imputation model –> RECIPE

I We need to know about the context of the problem:

1. What will happen to the imputed data?
2. What do we know about the process that generated the

missing data?
3. How well can be reconstruct the missing data from the

observed data?

Issues in thinking about the imputation model - I

I We need to know about the context of the problem:

1. What will happen to the imputed data?
2. What do we know about the process that generated the

missing data?
3. How well can be reconstruct the missing data from the

observed data?

Imputation and Analysis model

I Statistical inference with with missing data involves two
models:
I Imputation model
I Analysis model

I Address di�erent aspect of the estimation problem

Multiple imputation in mice

incomplete data imputed data analysis results pooled results

data frame mids mira mipo

mice() with() pool()



Imputation and Analysis model: Imputation model

Imputation model

I The model we use to draw imputations
I Reflects our knowledge about the true (but unknown) values
I Technically: posterior predictive distribution of each missing

entry

Imputation and Analysis model: Analysis model

Analysis model

I AKA: complete-data model, substantive model
I The model we use to estimate the parameters of scientific

interest (Q)
I The model we would fit had the data been complete
I Technically: any model that estimates the thing we want to

know

Imputation and Analysis model

I Are the imputation and analysis models entirely independent?
NO!

I Imputation model should more general to the analysis model
I When this is true, Meng (1994) said that imputation and

analysis models are congenial
I Take-home message: When creating imputed data,

I imagine future analysis models applied to the imputed data
sets

I extend imputation model to account for relations
specified in the analysis model

Imputation and Analysis model. Who’s driving?

I Model-based imputation
I First choose analysis model, then inform/derive the imputation

model
I When: If there is a strong scientific model
I When: If you know that certain relations hold

I Data-based imputation
I Use the observed data to impute the missing data, then do

analyses
I When: If there are multiple analysis models
I When: If you are unsure about relation between variables

I Use both perspectives to improve imputation and analysis

Issues in thinking about the imputation model - II

I We need to know about the context of the problem:

1. What will happen to the imputed data?
2. What do we know about the process that generated the

missing data?
3. How well can be reconstruct the missing data from the

observed data?

Imputation model and Missing Data Model

I Missing Data Model = Missing Data Mechanism
I Process that governs which Y ’s are observed and which Y ’s

are unobserved (Rubin, 1976)
I Sometimes we know this process (e.g.~experimental design,

sampling)
I Default MICE assumes a Missing At Random (MAR)

mechanism
I Assumption: We can explain di�erences in response probability

by the observed data
I Implication (FIMD2, eq. 2.10): After conditioning on the

observed data, the distribution of outcomes is the same for
responders and non-responders

I Take-home message: When creating imputed data,
I extend imputation model with factors related to the

missingness

Issues in thinking about the imputation model - III

I We need to know about the context of the problem:

1. What will happen to the imputed data?
2. What do we know about the process that generated the

missing data?
3. How well can be reconstruct the missing data from the

observed data?

Predictability of the missing values

I Higher predictability means
I more precise estimates
I shorter confidence intervals
I more powerful tests
I fewer imputations (m) needed

I Higher predictability is beneficial, but “limited by nature”
I Social en medical data often do not predict well

Issues in thinking about the imputation model –> RECIPE

I We need to know about the context of the problem:

1. What will happen to the imputed data?
2. What do we know about the process that generated the

missing data?
3. How well can be reconstruct the missing data from the

observed data?



Which predictors to include? RECIPE

1. Include all variables that appear in the analysis model,
including transformations and interactions

2. Include all variables that are related to the nonresponse
3. Include all variables that explain a considerable amount of

variance
4. Remove variables that have too many missing values within

the subgroup of incomplete cases

Functions mice::quickpred() and mice::flux()

https://stefvanbuuren.name/fimd/sec-modelform.html#sec:
predictors
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How to set up the imputation model

1. MAR or MNAR
2. Form of the imputation model
3. Which predictors
4. Derived variables
5. What is m?
6. Order of imputation
7. Diagnostics, convergence

Derived variables

I ratio of two variables
I sum score
I index variable
I quadratic relations
I interaction term
I conditional imputation
I compositions

Imputing a ratio

I Impute then transform (POST in FIMD1)
I Just another variable (JAV)
I Passive imputation
I Model-based imputation (new)

https://stefvanbuuren.name/fimd/sec-knowledge.html

Derived variables: summary

I Derived variables pose special challenges
I Plausible values should respect data dependencies
I If you can, create derived variables after imputation
I Best option: Probably model-based imputation
I More work needed to verify

Overview G

I Modelling choices
I Derived variables
I Diagnostics

Standard diagnostic plots in mice

In general, inspect the overlap between red and blue points.

I One-dimensional scatter plot: stripplot()
I Box-and-whisker plot: bwplot()
I Densities: densityplot()
I Scattergram: xyplot()

Strip plot

library(mice)
imp <- mice(nhanes, seed = 29981, print = FALSE)
stripplot(imp, pch = c(1, 19))



Strip plot
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A larger dataset –> Use bwplot()

imp <- mice(boys, seed = 24331, maxit = 1)
bwplot(imp)

A larger dataset –> Use bwplot()
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A larger dataset –> Use bwplot()
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Density plot

densityplot(imp)

Density plot
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Scatter plot

imp <- mice(boys, seed = 24331, m = 3,
maxit = 1, print = FALSE)

xyplot(imp, wgt ~ hgt | as.factor(.imp),
pch = c(1, 20), cex = c(0.75, 1.5))

Scatter plot
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Analysis of imputed data - MIMP I

Overview I

I Workflows
I Pooling non-normal quantities
I Multi-parameter test
I Longitudinal data example
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Multiple imputation in mice

incomplete data imputed data analysis results pooled results

data frame mids mira mipo

mice() with() pool()

Workflow 1: mids workflow using saved objects

# mids workflow using saved objects
library(mice)
imp <- mice(nhanes, seed = 123, print = FALSE)
fit <- with(imp, lm(chl ~ age + bmi + hyp))
est1 <- pool(fit)

Workflow 2: mids workflow using pipes

# mids workflow using pipes
library(magrittr)
est2 <- nhanes %>%

mice(seed = 123, print = FALSE) %>%
with(lm(chl ~ age + bmi + hyp)) %>%
pool()

Workflow3: mild workflow using base::lapply

# mild workflow using base::lapply
est3 <- nhanes %>%

mice(seed = 123, print = FALSE) %>%
mice::complete("all") %>%
lapply(lm, formula = chl ~ age + bmi + hyp) %>%
pool()

Workflow4: mild workflow using pipes and base::Map

# mild workflow using pipes and base::Map
est4 <- nhanes %>%

mice(seed = 123, print = FALSE) %>%
mice::complete("all") %>%
Map(f = lm, MoreArgs = list(f = chl ~ age + bmi + hyp)) %>%
pool()

Workflow5: mild workflow using purrr::map

# mild workflow using purrr::map
library(purrr)
est5 <- nhanes %>%

mice(seed = 123, print = FALSE) %>%
mice::complete("all") %>%
map(lm, formula = chl ~ age + bmi + hyp) %>%
pool()



Workflow6: long workflow using base::by

# long workflow using base::by
est6 <- nhanes %>%

mice(seed = 123, print = FALSE) %>%
mice::complete("long") %>%
by(as.factor(.$.imp), lm, formula = chl ~ age + bmi + hyp) %>%
pool()

Workflow7: long workflow using a dplyr list-column

# long workflow using a dplyr list-column
library(dplyr)
est7 <- nhanes %>%

mice(seed = 123, print = FALSE) %>%
mice::complete("long") %>%
group_by(.imp) %>%
do(model = lm(formula = chl ~ age + bmi + hyp, data = .)) %>%
as.list() %>%
.[[-1]] %>%
pool()

Not recommended: Average m imputed datasets

I Simple to do (for numeric data)
I One dataset to analyse
I Inherits all problems of single imputation

I Ecological fallacy, e.g., overstates correlation
I Biased parameter estimates
I Wrong confidence intervals

Not recommended: Stack m imputed data sets

I Simple to do
I Weight each record by 1/m
I One dataset to analyse
I Unbiased regression coe�cients for linear models
I Inherits many problems of single imputation

I Wrong confidence intervals, statistical test
I Dubious for non-linear models

Overview I
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I Longitudinal data example

Pooling normal quantities

I Rubin (1987, p.~75) assumes normality of complete-data
statistic

I Many statistics are approximately normally distributed,
especially for large n
I mean
I standard deviation
I regression coe�cients
I proportions
I linear predictors

I Advice: Use Rubin’s rules for such quantities

Pooling non-normal quantities

Table 3: Suggested transformations towards normality for various types
of statistics. The transformed quantities can be pooled by Rubin’s rules.

Statistic Transformation Source
Correlation Fisher z Schafer (1997)
Odds ratio Logarithm Agresti (1990)
Relative risk Logarithm Agresti (1990)
Hazard ratio Logarithm Marshall (2009)
Explained variance R2 Fisher z on root Harel (2009)
Survival probabilities Complementary log-log Marshall (2009)
Survival distribution Logarithm Marshall (2009)
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Multi-parameter tests

I When?
I Testing significance of set of variables
I Testing significance of a categorical variable
I If we only have test-statistics or P-values

I D1 Multivariate Wald test
I D2 Combined test statistics
I D3 Likelihood ratio test
I https://stefvanbuuren.name/fimd/sec-multiparameter.html



Example: Test categorical variable age

imp <- mice(nhanes2, m = 10, print = FALSE, seed = 71242)
m2 <- with(imp, lm(chl ~ age + bmi))
m1 <- with(imp, lm(chl ~ bmi))
summary(D1(m2, m1))

Example: Test categorical variable age

Models:
model formula

1 chl ~ age + bmi
2 chl ~ bmi

Comparisons:
test statistic df1 df2 dfcom p.value riv

1 ~~ 2 5.02 2 11.9 21 0.0263 0.628

Number of imputations: 10 Method D1

D1, D2 or D3?

I If you can, use D1()
I Use D2() if you have only the test statistics/P values, and

with m > 20
I D3() or D1() are about equally good for samples n > 200
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Longitudinal data example

I Long and Wide data
I Wide matrix feels most natural to applied researchers
I Wide matrix is suitable if data are observed at

(approximately) equal time points
I Long matrix is expected by software designed for time-varying

data
I Convert wide –> long: tidyr::pivot_longer()
I Convert long –> wide: tidyr::pivot_wider()
I https://stefvanbuuren.name/fimd/sec-longandwide.html

Longitudinal data imputation

I If you can, impute the Wide data
I Preserves relations over time
I Independence of row (persons)
I If you cannot, use multilevel imputation

SE Fireworks Disaster Saturday, May 13 2000, Enschede SE Fireworks Disaster

I 23 killed
I 950 injured
I 500 houses destroyed
I 1250 homeless
I 10000 evacuated
I post-traumatic stress



Roombeek now Embedded randomized controlled trial

I Mediant
I EMDR: Eye Movement Desensitization and Reprocessing
I CBT: Cognitive Behavioral Therapy
I 2 ◊ 26 children

I T1: pre-treatment
I T2: post-treatment (4–8 weeks)
I T3: follow-up (3 months)
I Outcome: UCLA PTSD Reaction Index (PTSD-RI)

Research questions

I Is one of these treatments more e�ective in reducing PTSD
symptoms at T2 and T3?

I Does the number of sessions needed to produce the
therapeutic e�ect di�er between the treatments?

(Missing) Data224 Flexible Imputation of Missing Data

Table 9.1: SE Fireworks Disaster data. The UCLA PTSD Reaction Index of
52 subjects, children and parents, randomized to EMDR or CBT.

id trt pp Y c
1 Y c

2 Y c
3 Y p

1 Y p
2 Y p

3 id trt pp Y c
1 Y c

2 Y c
3 Y p

1 Y p
2 Y p

3
1 E Y – – – 36 35 38 32 E N 28 17 8 40 42 33
2 C N 45 – – – – – 33 E N – – – 38 22 25
3 E N – – – 13 19 13 34 E N – – – 17 – –
4 C Y – – – 33 27 20 35 E Y 50 20 – 19 1 5
5 E Y 26 6 4 27 16 11 37 C N 30 – 26 59 – 28
6 C Y 8 1 2 32 15 13 38 C Y – – – 35 24 27
7 C Y 41 26 31 – 39 39 39 E N – – – – – –
8 C N – – – 24 13 35 40 E Y 25 5 2 42 13 11

10 C Y 35 27 14 48 23 – 41 E Y 36 11 9 30 2 1
12 C Y 28 15 13 45 33 36 43 E N 17 – – – – –
13 E Y – – – 26 17 14 44 E N 27 – – 40 – –
14 C Y 33 8 9 37 7 3 45 C Y 31 12 29 34 28 29
15 E Y 43 – 7 25 27 1 46 C Y – – – 44 35 25
16 C Y 50 8 35 39 21 34 47 C Y – – – 30 18 14
17 C Y 31 21 10 32 21 19 48 E Y 25 18 – 18 17 2
18 E Y 30 17 16 47 28 34 49 C N 24 23 16 44 29 34
19 E Y 29 6 5 20 14 11 50 E Y 31 13 9 34 18 13
20 E Y 47 14 22 44 21 25 51 C Y – – – 52 13 13
21 C Y 39 12 12 39 5 19 52 C Y 30 35 28 – 44 50
23 C Y 14 12 5 29 9 4 53 C Y 19 33 21 36 21 21
24 E N 27 – – – – – 54 C N 43 – – 48 – –
25 E Y 6 10 5 25 16 16 55 E Y 64 42 35 44 31 16
28 C Y – 2 6 36 17 23 56 C Y – – – 37 6 9
29 E Y 23 23 28 23 25 13 57 C Y 31 12 – 32 26 –
30 E Y – – – 20 23 12 58 E Y – – – 49 28 25
31 C N 15 24 26 33 36 38 59 E Y 39 7 – 39 7 –

9.2.1 Intention to treat

Table 9.1 contains the outcome data of all subjects. The columns labeled
Y c

t contain the child data, and the columns labeled Y p
t contain the parent

data at time t = (1, 2, 3). Children under the age of 6 years did not fill in the
child form, so their scores are missing.

Of the 52 initial participants 14 children (8 EMDR, 6 CBT) did not follow
the protocol. The majority (11) of this group did not receive the therapy, but
still provided outcome measurements. The three others received therapy, but
failed to provide outcome measures. The combined group is labeled as “drop-
out,”where the other group is called the “completers” or “per-protocol” group.
The missing data patterns for both groups can be obtained as:

> yvars <- c("yc1", "yc2", "yc3", "yp1", "yp2",
"yp3")

> md.pattern(fdd[fdd$pp == "Y", yvars])
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Conclusion SE Firework Disaster

I More columns than rows –> careful predictorMatrix
specification

I Preservation of longitudinal patterns
I Preservation of all children, as randomized
I Complete case analysis and multiple imputation led to same

substantive result
I No significant di�erence between EMDR-CBT
I Potentially fewer sessions needed for EMDR

Longitudinal data: Conclusions

I Imputation should preserve
I Group compositions across time
I Relations within time
I Relation across time

I If possible, code data in Wide form
I Codify predictor matrix to reflect data structure
I Use simple complete-data analysis: t-test, ANOVA, MANOVA
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Relevance of ignorability assumption 1

Ignorability implies

P(Y |X , R = 0) = P(Y |X , R = 1) (6)

so
P(Yobs|X ) = P(Ymis|X ) (7)

In words: The way in which Y depends on X is the same for the
observed and the missing data

Relevance of ignorability assumption 2

Consequence: We may use the relations in the observed data to
create imputations for the missing data

Ignorability = the belief that the available data are su�cient to
correct for the e�ects of the missing data

When is the ignorability assumption suspect?

I If important variables that govern the missing data process are
not available

I If there is reason to believe that responders di�er from
non-responders, even after accounting for the observed
information

I If the data are censored, or below the detection limit
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Models for nonignorable nonresponse

P(Y , R) does not factorise into independent parts, and must be
modelled jointly

Two approaches (there are some more):

I Selection model: P(Y , R) = P(R|Y )P(Y )
I Pattern mixture-model: P(Y , R) = P(Y |R)P(R)

Selection model

Selection model (Heckman, 1976) (Nobel prize Economics 2000)

P(Y , R|Â, ◊) = P(R|Y , Â)P(Y , ◊) (8)

P(R = 1|Y ) response mechanism, selection function
P(Y ) (joint) distribution for the data

Assumption: P(Â, ◊) = P(Â)P(◊) distinct parameters



Selection model example

Y Selection model 

Pattern mixture model

Pattern mixture-model (Rubin, 1977)

P(Y , R|Â, ◊) = P(Y |R, ◊)P(R|Â) (9)

P(Y |R = 1, ◊) (joint) distribution for the observed data
P(Y |R = 0, ◊) (joint) distribution for the missing data
P(R|Â) response probability

Assumption: P(Â, ◊) = P(Â)P(◊) distinct parameters

Pattern mixture model example

Y Mixture model 

Pattern mixture and selection models are related

I Selection to PM: P(Y |R) = P(R|Y )P(Y )
P(R)

I PM to selection: P(R|Y ) = P(Y |R)P(R)
P(Y )

Sensitivity analysis as a substitute for ignorability

MAR P(Y |X , R = 0) = P(Y |X , R = 1)
MNAR P(Y |X , R = 0) ”= P(Y |X , R = 1)

The problem: The data contain no information about
P(Y |X , R = 0).

The solution: Specify a range of plausible imputation models, and
study the influence on the outcomes

Models for R = 0 and R = 1 are di�erent
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A simple model to shift imputations

Specify P(Y |X , R)

Model
1 Y = X— + ‘ — is estimated from cases R = 1
2 Y = X— + ” + ‘ imputations applied to R = 0

Combined formulation: Y = X— + (1 ≠ R)” + ‘

” cannot be estimated, and must be chosen by the user
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Application

I Leiden 85+ cohort study
I N=1236, 85+ on Dec. 1, 1986
I N=956 were visited (1987-1989)
I BP is missing for 121 patients
I Do anti-hypertensive drugs shorten life in the oldest old?
I Scientific interest: Mortality risk as function of BP and age



Survival probability by response group
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Why sensitivity analysis?

From the data we see - Those with no BP measured die earlier -
Those that die early and that have no hypertension history have
fewer BP measurements

Thus, imputations of BP under MAR could be too high values.

We need to lower the imputed values of BP, and study the
influence on the outcome

How to specify ”?

I Combined formulation: Y = X— + (1 ≠ R)” + ‘
I ” cannot be estimated, and must be chosen by the user

Both models

Y Mixture model Selection model 

E�ect of response mechanism on BP
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How to impute under MNAR?

I Determine sensitivity parameters (delta)
I https://stefvanbuuren.name/fimd/sec-nonignorable.html

How to impute under MNAR?

I Post-process imputations (deduct delta)
I https://stefvanbuuren.name/fimd/sec-sensitivity.html

mice functions

I Estimating ” by the random indicator method (Jolani 2012):
mice.impute.ri()
I Iterative method that redraws the missing data indicator under

a selection model
I Not-at-random fully conditional specification (NARFCS) to

specify non-ignorable adjustments to imputation models
I mice.impute.mnar.norm() for normal data
I mice.impute.mnar.logreg() for binary data



General advice on MNAR

I Include as much data as possible in the imputation model
I State why the ignorability assumption is suspect
I Limit the possible non-ignorable alternatives
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Reporting guidelines

I Amount of missing data
I Reasons for missingness
I Di�erences between complete and incomplete data
I Method used to account for missing data
I Software
I Number of imputed datasets
I Imputation model
I Derived variables
I Diagnostics
I Pooling
I Listwise deletion
I Sensitivity analysis
I https://stefvanbuuren.name/fimd/sec-reporting.html#sec:

guidelines


