About me

Gerko Vink

Methodology & Statistics @ UU University

16 Oct 2024

qua patet orbis

We all know that the first \(n\) odd numbers sum to \(n^2\):

1 == 1^2
[1] TRUE
1 + 3 == 2^2
[1] TRUE
1 + 3 + 5 == 3^2
[1] TRUE
1 + 3 + 5 + 7 == 4^2
[1] TRUE

This extension to the same property amazes me even more:

2^3 == 3 + 5
[1] TRUE
3^3 == 7 + 9 + 11
[1] TRUE
#...
7^3 == 43 + 45 + 47 + 49 + 51 + 53 + 55
[1] TRUE